Skip to main content
Log in

The influence of agitation on oil substrate dispersion and oxygen transfer in Pseudomonas aeruginosa USM-AR2 fermentation producing rhamnolipid in a stirred tank bioreactor

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Water-immiscible substrate, diesel, was supplied as the main substrate in the fermentation of Pseudomonas aeruginosa USM-AR2 producing rhamnolipid biosurfactant, in a stirred tank bioreactor. In addition to the typical gas–aqueous system, this system includes gas–hydrocarbon–aqueous phases and the presence of surfactant (rhamnolipid) in the fermentation broth. The effect of diesel dispersion on volumetric oxygen transfer coefficient, k L a, and thus oxygen transfer, was evaluated at different agitations of 400, 500 and 600 rpm. The oxygen transfer in this oil–water–surfactant system was shown to be affected by different oil dispersion at those agitation rates. The highest diesel dispersion was obtained at 500 rpm or impeller tip speed of 1.31 m/s, compared to 400 and 600 rpm, which led to the highest k L a, growth and rhamnolipid production by P. aeruginosa USM-AR2. This showed the highest substrate mixing and homogenization at this agitation speed that led to the efficient substrate utilization by the cells. The oxygen uptake rate of P. aeruginosa USM-AR2 was 5.55 mmol/L/h, which showed that even the lowest k L a (48.21 h−1) and hence OTR (57.71 mmol/L/h) obtained at 400 rpm was sufficient to fulfill the oxygen demand of the cells. The effect of rhamnolipid concentration on k L a showed that k L a increased as rhamnolipid concentration increased to 0.6 g/L before reaching a plateau. This trend was similar for all agitation rates of 400, 500 and 600 rpm, which might be due to the increase in the resistance to oxygen transfer (k L decrease) and the increase in the specific interfacial area (a).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves SS, Maia CI, Vasconcelos JMT (2004) Gas-liquid mass transfer coefficient in stirred tanks interpreted through bubble contamination kinetics. Chem Eng Proc 43:823–830

    Article  CAS  Google Scholar 

  • Arjunwadkar SJ, Sarvanan K, Kulkarni PR, Pandit AB (1998) Gas liquid mass transfer in dual impeller bioreactor. Biochem Eng J 1:99–106

    Article  CAS  Google Scholar 

  • Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. McGraw-Hill, Singapore

    Google Scholar 

  • Bhardwaj G, Cameotra SS, Chopra HK (2013) Mini review: utilization of oleo-chemical industry by-products for biosurfactant production. AMB Express 3(68):1–5

    Google Scholar 

  • Casas-Lo´pez JL, Porcel EMR, Alberola IO, Martin MMB, Pe´rez JAS, Sevilla JMF, Chisti Y (2006) Simultaneous determination of oxygen consumption rate and volumetric oxygen transfer coefficient in pneumatically agitated bioreactors. Ind Eng Chem Res 45(3):1167–1171

    Article  Google Scholar 

  • Cents AHG, Brilman DW, Versteeg GF (2001) Gas absorption in an agitated gas-liquid-liquid system. Chem Eng Sci 56:1075–1083

    Article  CAS  Google Scholar 

  • Chaerun SK, Tazaki K, Asada R, Kogure K (2004) Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: Isolation and characterization of hydrocarbon degrading bacteria. Environ Int 30(7):911–922

    Article  CAS  Google Scholar 

  • Chandran P, Das N (2010) Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol 2(12):6942–6953

    Google Scholar 

  • Chayabutra C, Ju LK (2000) Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions. Appl Environ Microbiol 66(2):493–498

    Article  CAS  Google Scholar 

  • Chrzanowski L, Lawniczak L, Czaczyk K (2012) Why do microorganisms produce rhamnolipids? World J Microbiol Biotechnol 28:401–419

    Article  CAS  Google Scholar 

  • Clarke KG, Correia LDC (2008) Oxygen transfer in hydrocarbon-aqueous dispersions and its applicability to alkane bioprocesses: A review. Biochem Eng J 39:405–429

    Article  CAS  Google Scholar 

  • Clarke KG, Williams PC, Smit MS, Harrison STL (2006) Enhancement and repression of the volumetric oxygen transfer coefficient through hydrocarbon addition and its influence on oxygen transfer rate in stirred tank bioreactors. Biochem Eng J 28:237–242

    Article  CAS  Google Scholar 

  • Costa SGVAO, Lepine F, Milot S, Deziel E, Nitschke M, Contiero J (2009) Cassava wastewater as a substrate for the simultaneous production rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 36:1063–1072

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol and Genetic Eng Rev 25(1):165–186

    Article  CAS  Google Scholar 

  • Dumont E, Delmas H (2003) Mass transfer enhancement of gas absorption in oil-in water systems: a review. Chem Eng Proc 42:419–438

    Article  CAS  Google Scholar 

  • Espuny MJ, Egido S, Rodon I, Manresa A, Mercade ME (1996) Nutritional requirements of a biosurfactant producing strain Rhodococcus sp. 51T7. Biotechnol Lett 18(5):521–526

    Article  CAS  Google Scholar 

  • Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Article  CAS  Google Scholar 

  • Gomathy C, Senthilkumar R (2013) Production of rhamnolipid biosurfactant from a marine Pseudomonas aeruginosa. Int J Res Environ Sci Technol 3(3):86–91

    Google Scholar 

  • Gomes N, Aguedo M, Teixeira J, Belo I (2007) Oxygen mass transfer in a biphasic medium: influence on the biotransformation of methyl ricinoleate into y-decalactone by the yeast Yarrowia lipolytica. Biochem Eng J 35:380–386

    Article  CAS  Google Scholar 

  • Gomez-Diaz D, Gomes N, Teixeira JA, Belo I (2010) Gas-liquid interfacial area in the oxygen absorption to oil-in-water emulsions in an airlift reactor. Can J Chem Eng 88:561–564

    CAS  Google Scholar 

  • Jeong HS, Dong-Jung L, Sun-Hee H, Soon-Duck H, Jai-Yul K (2004) Rhamnolipid production by Pseudomonas aeruginosa immobilized in polyvinyl alcohol beads. Biotechnol Lett 26(1):35–39

    Article  CAS  Google Scholar 

  • Jia S, Li P, Park YS, Okabe M (1996) Enhanced oxygen transfer in tower bioreactor on addition of liquid hydrocarbons. J Ferment Bioeng 82(2):191–193

    Article  CAS  Google Scholar 

  • Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, Pourmand MR (2013) Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes. Iranian J Environ Health Sci Eng 10(6):1–9

    Article  Google Scholar 

  • Kirk TV, Szita N (2013) Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol Bioeng 110(4):1005–1019

    Article  CAS  Google Scholar 

  • Koide K, Yamazoe S, Harada S (1985) Effects of surface active substances on gas hold-up and gas-liquid mass transfer in bubble column. J Chem Eng Jpn 18(4):287–292

    Article  CAS  Google Scholar 

  • Kosaric NN, Gray CC, Cairns WL (1987) Exopolysaccharide bioemulsifiers. In: Biosurfactants and Biotechnology (ed) Surfactant science series, vol 25. Marcel Dekker, New York

    Google Scholar 

  • Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS, Banat IM (2011) Mini-Review: advances in utilization of renewable substrates for biosurfactant production. AMB Express 1(5):1–19

    Google Scholar 

  • Marchant R, Banat IM (2012) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605

    Article  CAS  Google Scholar 

  • Md Noh NA, Salwa MS, Ahmad Ramli MY (2014) Enhanced rhamnolipid production by Pseudomonas aeruginosa USM-AR2 via fed-batch cultivation based on maximum substrate uptake rate. Lett Appl Microbiol 58(6):617–623

    Article  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24(11):509–515

    Article  CAS  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94(6):736–747

    CAS  Google Scholar 

  • Najafpour GD (2007) Biochemical engineering and biotechnology. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Narsimhan G, Wang Z (2008) Guidelines for processing emulsion-based food. In: Hasenhuettl GL, Iartel RW (eds) Food emulsifiers and their applications, Springer, Heidelberg

    Google Scholar 

  • Noudeh GD, Noodeh AD, Moshafi MH, Behravan E, Afzadi MA, Sodagar M (2010) Investigation of cellular hydrophobicity and surface activity effects of biosynthesized biosurfactant from broth media of PTCC 1561. Afr J Microbiol Res 4(17):1814–1822

    CAS  Google Scholar 

  • Nur Asshifa MN (2009) The effects of Pseudomonas aeruginosa USM-AR2 culture containing rhamnolipid in facilitating crude oil distillation. Masters in science (biotechnology). Universiti Sains Malaysia, Penang

    Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168

    Article  CAS  Google Scholar 

  • Rashedi H, Assadi MM, Jamshidi E, Bonakdarpour B (2005) Production of rhamnolipids by Pseudomonas aeruginosa growing on carbon sources. Int J Environ Sci Technol 3(3):297–303

    Article  Google Scholar 

  • Raza ZA, Rehman A, Khan MS, Khalid ZM (2007) Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation 18(1):115–121

    Article  CAS  Google Scholar 

  • Rols JL, Goma G (1989) Enhancement of oxygen transfer rates in fermentation using oxygen vectors. Biotechnol Adv 7(1):1–14

    Article  CAS  Google Scholar 

  • Rosso D, Huo DL, Stenstrom MK (2006) Effects of interfacial surfactant contamination on bubble gas transfer. Chem Eng Sci 61:5500–5514

    Article  CAS  Google Scholar 

  • Sabra W, Kim EJ, Zeng AP (2002) Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology 148:3195–3202

    Article  CAS  Google Scholar 

  • Saharan BS, Sahu RK, Sharma D (2012) A review on biosurfactants: fermentation, current developments and perspectives. Genet Eng Biotechnol J 2011:GEBJ-29

    Google Scholar 

  • Salwa MS, Nur Asshifa MN, Amirul AA, Ahmad Ramli MY (2010) Different feeding strategy for the production of biosurfactant from Pseudomonas aeruginosa USM-AR2 in modified bioreactor. Biotechnol Bioproc Eng 14:763–768

    Article  Google Scholar 

  • Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts. Prentice Hall, New Jersey

    Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2006) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  Google Scholar 

  • Sivaprakasam S, Mahadevan S, Gopalaraman S (2008) Oxygen mass transfer studies on batch cultivation of P. aeruginosa in a biocalorimeter. Elect. J Biotechnol 11(1):1–13

    Google Scholar 

  • Soberón-Chávez G, Maier RM (2011) Biosurfactants: a general overview. In: Soberón-Chávez G (ed) Biosurfactants, microbiology monographs 20. Springer, Heidelberg

    Google Scholar 

  • Wagner M, Popel HJ (1996) Surface active agents and their influence on oxygen transfer. Water Sci Technol 34(3–4):249–256

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by USM Research University Individual (RUI) Grant Scheme (1001/PBIOLOGI/811242) and Ministry of Education Malaysia, Fundamental Research Grant Scheme (FRGS) (203/PBIOLOGI/6711494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad R.M. Yahya.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nur Asshifa, M.N., Zambry, N., Salwa, M.S. et al. The influence of agitation on oil substrate dispersion and oxygen transfer in Pseudomonas aeruginosa USM-AR2 fermentation producing rhamnolipid in a stirred tank bioreactor. 3 Biotech 7, 189 (2017). https://doi.org/10.1007/s13205-017-0828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0828-0

Keywords

Navigation