Skip to main content
Log in

Coercivity mechanisms in nanocrystalline Sm–Co–Cu thin films: the spring effect

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In magnetron sputtering, with the simultaneous deposition of SmCo and copper, it is possible for tailoring the coercive field of SmCoCu thin films. Microstructural analysis pointed out that nanocrystalline 2:17 rhombohedral phase with diameter 10–100 nm was obtained, and coercivities in the range between 3 and 8.5 kOe. These characteristics are suitable for magnetic recording. The coercivity mechanisms are discussed. The initial magnetization curve, measured in thermally demagnetized samples, is used to discuss the coercivity mechanisms. A spring effect in the samples is observed. The spring effect is due to reversible rotation of magnetization and indicates that the coercivity mechanism is nucleation or coherent rotation of single domain size nanoscale grains. Structural data refined with X-ray diffraction Rietveld analysis for Sm2(Co,Cu)17 rhombohedral phase, Sm(Co,Cu)5 phase and cubic oxide Sm2O3 phase are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All the data is already presented in the paper.

References

  • Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Toby BH (2004) Size–strain line-broadening analysis of the ceria round-robin sample. J Appl Crystallogr 37(6):911–924

    Article  CAS  Google Scholar 

  • Braun D (2004) Exact activation energy of magnetic single domain particles. J Magn Magn Mater 283(1):1–7

    Article  CAS  Google Scholar 

  • Braun P, Laukart J, Golla-Schindler U, Löffler R, Goll D, Schneider G (2022) Analysis of microstructure evolution during heat treatment of CoSm permanent magnets using high-resolution scanning electron microscopy. Pract Metallogr 59:188–198

    Article  CAS  Google Scholar 

  • Brown WF Jr (1945) Virtues and weaknesses of the domain concept. Rev Mod Phys 17:15–19

    Article  Google Scholar 

  • Burrows F, Parker C, Evans RFL, Hancock Y, Hovorka O, Chantrell RW (2010) Energy losses in interacting fine-particle magnetic composites. J Phys D Appl Phys 43(47):474010

    Article  Google Scholar 

  • Buschow KHJ, van der Goot (1971) Composition and crystal structure of hexagonal Cu-rich rare earth-copper compounds. Acta Crystallographica B27(6):1085–1088

    Article  Google Scholar 

  • Chantrell RW, Lyberatos A, Wohlfarth EP (1984) Anhysteretic properties of interacting magnetic tape particles. J Appl Phys 55(6):2223–2225

    Article  Google Scholar 

  • Cheary RW, Coelho AA (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr 25:109–121

    Article  CAS  Google Scholar 

  • Coelho AA (2018) TOPAS and TOPAS-academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J Appl Crystallogr 51:210–218

    Article  CAS  Google Scholar 

  • Coleman JE (1975) The magnetostatic energies of spherical particles containing reverse spike domains. J Phys d Appl Phys 8:1910–1917

    Article  Google Scholar 

  • Corte-Real MM, de Campos MF, Zhang Y, Hadjipanayis GC, Liu JF (2002) Coercivity analysis in Sm(CoFeCuZr)z magnets with abnormal temperature behavior. Physica Status Solidi (a) 193(2):302–313

    Article  CAS  Google Scholar 

  • Costa LFT, Girotto F, Baiotto R, Gerahrdt G, de Campos, MF, Missell FP (2011) Influence of microstructural constituents on the hysteresis curves in 0.2%C and 0.45%C steels. J Phys: Conf Ser 303:012029

    Google Scholar 

  • Costa LFT, de Campos MF, Gerhardt GJL, Missell FP (2014) Hysteresis and magnetic Barkhausen noise for SAE 1020 and 1045 steels with different microstructures. IEEE Trans Magn 50:2001504

    Article  Google Scholar 

  • Costa LFT, Gerhardt GJL, Missell FP, de Campos MF (2019) Interpretation of magnetic Barkhausen noise bursts in low frequency measurements. Acta Phys Pol A 136(5):740–744

    Article  CAS  Google Scholar 

  • da Silva Júnior AF, de Campos MF, Martins AS (2017) Domain wall structure in metals: a new approach to an old problem. J Magn Magn Mater 442:236–241

    Article  Google Scholar 

  • de Campos MF (2006) Effect of grain size, lattice defects and crystalline orientation on the coercivity of sintered magnets. Mater Sci Forum 530:146–151

    Article  Google Scholar 

  • de Campos MF (2008) The coercivity mechanisms in Sm(CoFeCuZr)z nanocrystalline magnets: nucleation x pinning. Mater Sci Forum 591–593:8–12

    Article  Google Scholar 

  • de Campos MF (2012) A general coercivity model for soft magnetic materials. Mater Sci Forum 727–728:157–162

    Article  Google Scholar 

  • de Campos MF (2014a) Heat treatment design for NdFe and SmCo5 magnets with basis on the phase diagram. Mater Sci Forum 802:619–623

    Article  Google Scholar 

  • de Campos MF (2014b) Coercivity mechanism in hard and soft sintered magnetic materials. Mater Sci Forum 802:563–568

    Article  Google Scholar 

  • de Campos MF (2016) Shape anisotropy as coercivity mechanism. Mater Sci Forum 869:591–595

    Article  Google Scholar 

  • de Campos MF, de Castro JA (2010a) The critical volume for nucleation. Mater Sci Forum 660–661:279–283

    Article  Google Scholar 

  • de Campos MF, de Castro JA (2010b) Optimizing the heat treatment of rare earth-transition metal sintered magnets. Mater Sci Forum 660–661:290–295

    Article  Google Scholar 

  • de Campos MF, de Castro JA (2012) Nucleus size determination for Nd2Fe14B, Sm2Co17, SmCo5 and BaFe12O19 magnets. Mater Sci Forum 727–728:151–156

    Article  Google Scholar 

  • de Campos MF, de Castro JA (2019a) Predicting recoil curves in Stoner-Wohlfarth anisotropic magnets. Acta Phys Pol A 136(5):737–739

    Article  Google Scholar 

  • de Campos MF, de Castro JA (2019b) An overview on nucleation theories and models. J Rare Earths 37(10):1015–1022

    Article  Google Scholar 

  • de Campos MF, de Castro JA (2020) Calculation of recoil curves in isotropic and anisotropic stoner-Wohlfarth materials. IEEE Trans Magn 56(3):7512304

    Article  Google Scholar 

  • de Campos MF, Landgraf FJG (2000) Remarks on the Co-rich region of the Co-Sm diagram. J Phase Equilibria 21:443–446

    Article  Google Scholar 

  • de Campos MF, Landgraf FJG (2005) Determination of intrinsic magnetic parameters of SmCo5 phase in sintered samples. Mater Sci Forum 498–499:129–133

    Article  Google Scholar 

  • de Campos MF, Landgraf FJG (2012) The samarium depleted zone in SmCo5 magnets. Mater Sci Forum 727–728:169–174

    Article  Google Scholar 

  • de Campos MF, Rios PR (2004) Kinetical analysis of the heat treatment procedure in SmCo5 and other rare-earth transition-metal sintered magnets. J Alloy Compd 377(1–2):121–126

    Article  Google Scholar 

  • de Campos MF, Landgraf FJG, Saito NH, Romero SA, Neiva AC, Missell FP, de Morais E, Gama S, Obrucheva EV, Jalnin BV (1998) Chemical composition and coercivity of SmCo5 magnets. J Appl Phys 84:368-373

  • de Campos MF, Okumura H, Hadjipanayis G, Rodrigues D, Landgraf FJ, Neiva A, Missell FP (2004) Effect of several heat treatments on the microstructure and coercivity of SmCo5 magnets. J Alloy Compd 368(1–2):304–307

    Article  Google Scholar 

  • de Campos MF, de Castro JA, Rios PR (2006a) Modelling the heat treatment of sintered SmCo5 magnets. Mater Sci Forum 530–531:152–157

    Article  Google Scholar 

  • de Campos MF, Emura M, Landgraf FJG (2006b) Consequences of magnetic aging for iron losses in electrical steels. J Magn Magn Mater 304:e593–e595

    Article  Google Scholar 

  • de Campos MF, Sablik MJ, Landgraf FJG, Hirsch TK, Machado R, Magnabosco R, Bandyopadhyay A (2008) Effect of rolling on the residual stresses and magnetic properties of a 05% Si electrical steel. J Magn Magn Mater 320(14):e377–e380

    Article  Google Scholar 

  • de Campos MF, Romero SA, Landgraf FJG, Missell FP (2011) Estimate of the anisotropy field in isotropic SmCo 2:17 magnets with the Stoner-Wohlfarth CLC model. J Phys Conf Ser 303:012049

    Article  Google Scholar 

  • de Campos MF, Sampaio da Silva FA, Perigo EA, de Castro JA (2013) Stoner-Wohlfarth model for the anisotropic case. J Magnetism Magnetic Mater 345:147–152

    Article  Google Scholar 

  • de Campos MF, da Silva FAS, de Castro JA (2014a) Stoner-Wohlfarth model for nanocrystalline anisotropic Sm2Co17 magnets. Mater Sci Forum 775–776:431–436

    Article  Google Scholar 

  • de Campos MF, da Silva FAS, de Castro JA (2014b) Relation between initial magnetization curve and grain size of nanocrystalline NdFeB magnets. Mater Sci Forum 802:558–562

    Article  Google Scholar 

  • de Campos MF, Sampaio da Silva FA, de Castro JA (2016) Hysteresis modeling of NdFeB magnets with high Nd. Mater Sci Forum 869:585–590

    Article  Google Scholar 

  • de Campos MF, Romero SA, de Castro JA (2022) Estimation of texture and anisotropy field in a NdDyFeCoB magnet by magnetic measurements at the perpendicular direction. J Magn Magn Mater 564:170119

    Article  Google Scholar 

  • de Castro JA, de Campos MF (2014) Influence of the grain size on the dysprosium diffusion in NdFeB magnets. Mater Sci Forum 802:546–551

    Article  Google Scholar 

  • Derkaoui S, Allibert CH (1989) Redetermination of the phase equilibria in the system Sm-Co-Cu for Sm content 0–20 AT.% AT 850°C. J Less Common Metals 154:309–315

    Article  CAS  Google Scholar 

  • Doyle B (2009) The Stoner-Wohlfarth astroid—an introduction. IEEE Trans Magn 45(1):7–7

    Article  Google Scholar 

  • Evans RFL, Chantrell RW, Nowak U, Lyberatos A, Richter H-J (2012) Thermally induced error: density limit for magnetic data storage. Appl Phys Lett 100:102402

    Article  Google Scholar 

  • Fullerton EE, Sowers CH, Pearson JP, Bader SD, Wu XZ, Lederman D (1996) A general approach to the epitaxial growth of rare-earth-transition-metal films. Appl Phys Lett 69:2438–2440

    Article  CAS  Google Scholar 

  • Girt E, Krishnan KM, Thomas G, Altounian Z (2000) Nanocomposite Nd-rich Nd–Fe–B alloys: approaching ideal Stoner-Wohlfarth type behavior. Appl Phys Lett 76(13):1746–1748

    Article  CAS  Google Scholar 

  • Givord D, Liénard A, de la Bâthie RP, Tenaud P, Viadieu T (1985) Determination of the degree of crystallites orientation in permanent magnets by X-ray scattering and magnetic measurements. Le Journal de Physique Colloques 46(C6):C6–313–C6–317

  • Glardon R, Kurz W (1979) The cobalt-samarium-copper phase diagram. Z Metallkd 70:386–391

    CAS  Google Scholar 

  • González JA, Andrés JP, Antón RL (2021) Applied trends in magnetic rare earth/transition metal alloys and multilayers. Sensors (Basel) 21(16):5615

    Article  Google Scholar 

  • Görnert P, Schüppel W, Sinn E, Schumacher F, Hempel KA, Turilli G, Rösler M (1992) Comparative measurements of the effective anisotropy field Ha for barium ferrites. J Magn Magn Mater 114(1–2):193–201

    Article  Google Scholar 

  • Hilzinger HR, Kronmüller H (1972) Spin configuration and intrinsic coercive field of narrow domain walls in Co5R-compounds. Physica Status Solidi (b) 54(2):593–604

    Article  CAS  Google Scholar 

  • Jansen E, Schäfer W, Will G (1994) R values in analysis of powder diffraction data using Rietveld refinement. J Appl Crystallogr 27(4):492–496

    Article  CAS  Google Scholar 

  • Jin HM, Chen HN, Tang DS, Han JF, Shi Y (1983) Magnetic anisotropy of Sm3+ near some lattice defects in Sm2Co17 and SmCo5. J Magn Magn Mater 31–34:857–858

    Google Scholar 

  • Kelly PE, O’Grady K, Mayo PI, Chantrell RW (1989) Switching mechanisms in cobalt-phosphorus thin films. IEEE Trans Magn 25(5):3881–3883

    Article  CAS  Google Scholar 

  • Kief MT, Victora RH (2018) Materials for heat-assisted magnetic recording. MRS Bull 43(2):87–92

    Article  Google Scholar 

  • Kittel C (1946) Theory of the structure of ferromagnetic domains in films and small particles. Phys Rev 70(11–12):965–971

    Article  CAS  Google Scholar 

  • Kneller E (1980) Static and anhysteretic magnetic properties of tapes. IEEE Trans Magn 16(1):36–41

    Article  Google Scholar 

  • Kneller EF, Hawig R (1991) The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans Magn 27(4):3588–3560

    Article  CAS  Google Scholar 

  • Kneller EF, Luborsky FE (1963) Particle size dependence of coercivity and remanence of single-domain particles. J Appl Phys 34(3):656–658

    Article  CAS  Google Scholar 

  • Kohmoto O, Yamane T, Miyoshi J, Sakihara H, Ono F (2004) Orientation of c-axis of Sr-ferrite particles in rubber magnets. J Magn Magn Mater 272–276:E1791–E1793

    Article  Google Scholar 

  • Koppoju S, Chandrasekaran V, Gopalan R (2015) 52.7 kOe high coercivity in Sm(Co0.9Cu0.1)4.8 melt-spun ribbons. AIP Adv 5:077118

    Article  Google Scholar 

  • Lilley BA (1950) Energies and widths of domain boundaries in ferromagnetics. Lond Edinb Dublin Philos Magazine J Sci 41:792–813

    Article  CAS  Google Scholar 

  • Linetskiy Ya L, Salo IP (1989) Structure transformations of spray coated Sm-Co alloys during annealing. Phys Met Metallogr 68(1):115–122

    Google Scholar 

  • Lukin AA, Kolchugina NB, Koshkid’koc YS, Kamynin AV, Vasilenko DY (2018) Inorganic Mater Appl Res 9(5):900–905

  • Menth A, Nagel H (1976) Bulk-hardened Sm-Co-Cu-Fe 2:17 magnets. Appl Phys Lett 29(4):270–272

    Article  CAS  Google Scholar 

  • Néel L (1956) Remarques sur la théorie des propriétés magnétiques des couches minces et des grains fins. Journal de Physique et Le Radium 17(3):250–255

    Article  Google Scholar 

  • Nesbitt EA, Willens RH, Sherwood RC, Buehler E, Wernick JH (1968) New permanent magnet materials. Appl Phys Lett 12(11):361–362

    Article  CAS  Google Scholar 

  • Nicholas DM, Barnfield P, Mendham J (1988) The oxidation of the alloy Co5Sm. J Mater Sci Lett 7(3):304–306

    Article  CAS  Google Scholar 

  • Pal SK (2015) Anisotropic hard magnetic nanoparticles and nanoflakes obtained by surfactant-assisted ball milling. PHD Thesis. Technische Universität Dresden, Dresden. https://d-nb.info/1088185444/34. Accessed 14 July 2023

  • Park SH, Kim SO, Lee TD, Oh HS, Kim YS, Park NY, Hong DH (2006) Effect of top Ru deposition pressure on magnetic and microstructural properties of CoCrPt–SiO2 media in two-step Ru layer. J Appl Phys 99:08E701

    Article  Google Scholar 

  • Périgo EA, Takiishi H, Motta CC, Faria RN, Lima NB (2008) Determination of the crystallographic texture of sintered PrFeB magnets based on X-ray diffraction patterns. J Magn Magn Mater 320(14):e40–e42

    Article  Google Scholar 

  • Perkins R, Gaiffi S, Menth A (1975) Permanent magnet properties of Sm2(Co, Fe)17. IEEE Transact Magn 11(5):1431–1433

    Article  Google Scholar 

  • Perry AJ (1977) The constitution of copper-hardened samarium-cobalt permanent magnets. J Less-Common Metals 51:153–162

    Article  CAS  Google Scholar 

  • Pfeiffer H (1990a) Determination of anisotropy field distribution in particle assemblies taking into account thermal fluctuations. Physica Status Solidi (a) 118(1):295–306

    Article  Google Scholar 

  • Pfeiffer H (1990b) Influence of thermal fluctuations on the magnetic properties of particle assemblies. Physica Status Solidi (a) 122(1):377–389

    Article  Google Scholar 

  • Pfeifer F, Radeloff C (1980) Soft magnetic Ni-Fe and Co-Fe alloys—some physical and metallurgical aspects. J Magn Magn Mater 19(1–3):190–207

    Article  CAS  Google Scholar 

  • Pfeiffer H, Schüppel W (1990) Investigation of magnetic properties of barium ferrite powders by remanence curves. Physica Status Solidi (a) 119(1):259–269

    Article  CAS  Google Scholar 

  • Qiu Z, Liu JP, Yu H, Poudyal N, Han G, Zeng D, Hong Y (2018) Atomic diffusion and microstructure of SmCo 5 multilayers with high coercivity. J Alloy Compd 733:45–52

    Article  CAS  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71

    Article  CAS  Google Scholar 

  • Romero SA, Cornejo DR, Rhen FM, Neiva AC, Tabacniks MH, Missell FP (2000) Magnetic properties and underlayer thickness in SmCo/Cr films. J Appl Phys 87(9):6965–6967

    Article  CAS  Google Scholar 

  • Romero SA, de Campos MF, Rechenberg HR, Missell FP (2008) Interacting Stoner-Wohlfarth behavior in hysteresis curves of Sm(CoFeCuZr)z magnets. J Magn Magn Mater 320(14):e73–e76

    Article  CAS  Google Scholar 

  • Romero SA, de Campos MF, de Castro JA, Moreira AJ, Landgraf FJG (2013) Microstructural changes during the slow-cooling annealing of nanocrystalline SmCo 2:17 type magnets. J Alloy Compd 551:312–317

    Article  CAS  Google Scholar 

  • Romero SA, Moreira AJ, Landgraf FFG, de Campos MF (2020) Abnormal coercivity behavior and magnetostatic coupling in SmCoCuFeZr magnets. J Magn Magn Mater 514:167147

    Article  CAS  Google Scholar 

  • Sampaio da Silva FA, Castro NA, de Campos MF (2013) Modeling hysteresis curves of anisotropic SmCoFeCuZr magnets. J Magnetism Magnetic Mater 328:53–57

    Article  CAS  Google Scholar 

  • Sampaio da Silva FA, de Campos MF (2012) A simple algorithm for the calculation of hysteresis for isotropic NdFeB magnets. Materials Science Forum 727–728:119–123

    Article  Google Scholar 

  • Scardi P (2020) Diffraction line profiles in the Rietveld method. Cryst Growth Des 20:6903–6916

    Article  CAS  Google Scholar 

  • Schneider J, Eckert D, Müller K-H, Handstein A, Mühlbach H, Sassik H, Kirchmayr HR (1990) Magnetization processes in Nd4Fe77B19 permanent magnetic materials. Mater Lett 9(5–6):201–203

    Article  CAS  Google Scholar 

  • Sharrock MP (1994) Time dependence of switching fields in magnetic recording media (invited). J Appl Phys 76(10):6413–6418

    Article  CAS  Google Scholar 

  • Slonczewski JC (2009) Theory of magnetic hysteresis in films and its application to computers. IEEE Trans Magn 45(1):8–14

    Article  Google Scholar 

  • Stoner EC, Wohlfarth EP (1947) Interpretation of high coercivity in ferromagnetic materials. Nature 160(4071):650–651

    Article  Google Scholar 

  • Stoner EC, Wohlfarth EP (1991) A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans Magn 27(4):3475–3518

    Article  CAS  Google Scholar 

  • Strnat KJ (1978) Rare-earth magnets in present production and development. J Magn Magn Mater 7(1–4):351–360

    Article  Google Scholar 

  • Thompson MP, Chang E, Foto A, Citron-Rivera JG, Haddad D, Waldo R, Pinkerton FE (2017) Grain-boundary-diffused magnets: the challenges in obtaining reliable and representative BH curves for electromagnetic motor design. IEEE Electrification Mag 5(1):19–27

    Article  Google Scholar 

  • Toby BH (2006) R factors in Rietveld analysis: How good is good enough? Powder Diffr 21:67–70

    Article  CAS  Google Scholar 

  • Warshaw I, Roy R (1961) Polymorphism of the rare earth sesquioxides. J Phys Chem 65(11):2048–2051

    Article  CAS  Google Scholar 

  • Weller D, Moser A, Folks L, Best M, Lee W, Toney M, Schwickert M, Thiele J, Oerner M (2000) High Ku materials approach to 100 Gbits/in2. IEEE Trans Magn 36:10–15

    Article  CAS  Google Scholar 

  • Wicht S, Neu V, Schultz L, Weller D, Mosendz O, Parker G, Pisana S, Rellinghaus B (2013) Atomic resolution structure–property relation in highly anisotropic granular FePt-C films with near-Stoner-Wohlfarth behavior. J Appl Phys 114:063906

    Article  Google Scholar 

  • Wood R (2009) Exact solution for a Stoner-Wohlfarth particle in an applied field and a new approximation for the energy barrier. IEEE Trans Magn 45(1):100–103

    Article  Google Scholar 

  • Wood R (2022) Shingled magnetic recording (SMR) and two-dimensional magnetic recording (TDMR). J Magn Magn Mater 561:169670

    Article  CAS  Google Scholar 

  • Zhang Z, Song X, Xu W, Li D, Liu X (2011) Crystal structure and magnetic performance of nanocrystalline SmCo9.8 alloy. J Appl Phys 110:124318

    Article  Google Scholar 

  • Zhao GP, Lim HS, Feng YP, Ong CK, Liu GR (2002) Reversal mechanism in permanent magnetic materials. J Appl Phys 91(4):2186–2191

    Article  CAS  Google Scholar 

  • Zhao G, Lim H, Feng Y, Ong C (2004) A hybrid model to calculate the magnetization of nanostructured permanent magnetic materials. Comput Mater Sci 30(3–4):308–313

    Article  CAS  Google Scholar 

  • Zhao GP, Zhao MG, Lim HS, Feng YP, Ong CK (2005) Coercivity of permanent magnetic thin film. J Phys Condens Matter 17(1):151–160

    Article  CAS  Google Scholar 

  • Zolotoyabko E (2009) Determination of the degree of preferred orientation within the March-Dollase approach. J Appl Crystallogr 42(3):513–518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

FAPERJ, CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Flavio de Campos.

Ethics declarations

Conflict of interest

The authors declare no existence of conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, S.A., Rodrigues, D., Germano, T. et al. Coercivity mechanisms in nanocrystalline Sm–Co–Cu thin films: the spring effect. Appl Nanosci 13, 6353–6372 (2023). https://doi.org/10.1007/s13204-023-02931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-023-02931-1

Keywords

Navigation