Skip to main content

Advertisement

Log in

Comparative study of carbamide-based fertilizers with phosphate-containing shells loaded with biochar, diatomite, and saponite components

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Trade balances of fertilizers have been studied in this article. The war’s repercussions for the world economy are changes in food, energy, fertilizer prices, and supplies. The production of grain crops in Ukraine and other countries should be increased due to innovative sustainable agriculture technologies that decrease nitrogen granules dissolution. The fertilizers with the controlled release of nutrient elements could increase retention time and improve fertilizer efficiency. This article compared three types of fertilizers with carbamide core and phosphate shell, including various additives (biochar, diatomite, saponite) by morphology end elemental analysis. TEM investigated fertilizer structures in water suspensions to compare their behavior in conditions close to fertilizers dissolution underwater treatment in the soil. The ability to form colloidal micelles was investigated by electrophoreses and compared to find more suitable fertilizer with additives to phosphate shells to slow the release of components and application in agriculture. The surface morphology and internal structure of the granule were investigated by SEM analysis. The elements’ distribution in the shell, interface, and core was investigated by EDX spectroscopy. The existence of colloidal micelles due to fertilizers dissolution is essential for decreasing the solubility of fertilizers. It is shown that adding biochar to granule shell increases shell porosity. The uniform nanoporous structure is observed through all thicknesses of the shell that provide moisture penetration through the shell. The fertilizers' porous shell structure and biochar additives' basic pH can reduce soil acidity and nutrient leaching. The colloidal system of biochar-added sample filtrate could contain nanoparticles with 5–15 nm size. It was concluded that the positively charged colloidal micelles are formed for fertilizer samples with biochar and humates addition. For fertilizers, samples with the addition of diatomite and saponite micelles were not formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

Download references

Acknowledgements

This article was prepared in the frame of the research project "Formation of the environmentally safe long-acting fertilizers based on the phosphate raw material." 0120U102003, financed by the Ministry of Education and Science of Ukraine.

Funding

This research work had been supported by the Ministry of Science and Education of Ukraine under the project "Formation of the environmentally safe long-acting fertilizers based on the phosphate raw material." (0120U102003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Yanovska.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolshanina, S., Yanovska, A., Vakal, V. et al. Comparative study of carbamide-based fertilizers with phosphate-containing shells loaded with biochar, diatomite, and saponite components. Appl Nanosci 13, 7289–7302 (2023). https://doi.org/10.1007/s13204-023-02895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-023-02895-2

Keywords

Navigation