Skip to main content
Log in

Functional enhancement in Alq3 via metal doping and nanoscale synthesis: a review

  • Review Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Tris (8-hydroxyquinolinato) aluminum (Alq3) is an organic electron transport and luminescent material. Even after more than 20 years of intense research and development, Alq3 continues to be one of the widely used organic light emitting diode (OLED) material. Metal doping/incorporation and nanoscale synthesis are the two popular strategies used to enhance the functional properties of Alq3. This review provides an understanding about the structure and properties of Alq3. It also tries to address the long-time unresolved issue regarding the origin of blue-shifted luminescence from γ and δ faces of Alq3. Metal doping/incorporation and nanoscale synthesis are the two widely adopted approaches to enhance the functional properties of Alq3. This review assesses the research done on these two strategies and attempts to understand the science behind adopting these strategies and the resulting performance enhancement. This review also provides an account of the research work undertaken on the relatively new direction that is nanoscale synthesis of metal-doped/incorporated Alq3 nanostructures which integrates the promises of nanoscale synthesis with the benefits of metal doping/incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alzahrani H, Sulaiman K, Mahmoud AY, Bahabry RR (2020) Study of organic visible-blind photodetector based on Alq3: NPD blend for application in near-ultraviolet detection. Opt Mater 110:110490

    Article  CAS  Google Scholar 

  • Amati M, Lelj F (2002) Are UV–Vis and luminescence spectra of Alq3 [aluminum tris (8-hydroxy quinolinate)] δ-phase compatible with the presence of the fac-Alq3 isomer? A TD-DFT investigation. Chem Phys Lett 358(1–2):144–150

    Article  CAS  Google Scholar 

  • Baik JM, Lee J-L, Shon Y, Kang TW (2008) Observation of ferromagnetic ordering in Mn-doped 8-hydroxy-quinoline aluminum. Phys Status Sol Rapid Res Lett 2(1):22–24

    Article  CAS  Google Scholar 

  • Barth S, Müller P, Riel H, Seidler PF, Riess W, Vestweber H, Bässler H (2001) Electron mobility in tris (8-hydroxy-quinoline) aluminum thin films determined via transient electroluminescence from single-and multilayer organic light-emitting diodes. J Appl Phys 89(7):3711–3719

    Article  CAS  Google Scholar 

  • Basir A, Alzahrani H, Sulaiman K, Muhammadsharif FF, Abdullah SM, Mahmoud AY, Bahabry RR, Alsoufi MS, Bawazeer TM, Ab Sani SF (2021) A novel self-powered photodiode based on solution-processed organic TPD: Alq3 active layer. Mater Sci Semicond Process 131:105886

    Article  CAS  Google Scholar 

  • Berleb S, Brütting W (2002) Dispersive electron transport in tris (8-hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy. Phys Rev Lett 89(28):286601

    Article  CAS  Google Scholar 

  • Bhagat SA, Borghate SV, Thejo Kalyani N, Dhoble SJ (2014) Synthesis and characterization of pure and Li+ activated Alq3 complexes for green and blue organic light emitting diodes and display devices. Luminescence 29(5):433–439

    Article  CAS  Google Scholar 

  • Bhagat SA, Borghate SV, Thejo Kalyani N, Dhoble SJ (2015) Novel Na+ doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays. Luminescence 30(3):251–256

    Article  CAS  Google Scholar 

  • Bi H, Hongyu Zhang Yu, Zhang HG, Zhongmin Su, Wang Y (2010) Fac-Alq3 and Mer-Alq3 nano/microcrystals with different emission and charge-transporting properties. Adv Mater 22(14):1631–1634

    Article  CAS  Google Scholar 

  • Boulet J, Mohammadpour A, Shankar K (2015) Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods. J Nanosci Nanotechnol 15(9):6680–6689

    Article  CAS  Google Scholar 

  • Braun M, Gmeiner J, Tzolov M, Coelle M, Meyer FD, Milius W, Hillebrecht H, Wendland O, Von Schütz JU, Brütting W (2001) A new crystalline phase of the electroluminescent material tris (8-hydroxyquinoline) aluminum exhibiting blueshifted fluorescence. J Chem Phys 114(21):9625–9632

    Article  CAS  Google Scholar 

  • Brinkmann M, Gadret G, Muccini M, Taliani C, Masciocchi N, Sironi A (2000) Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris (8-hydroxyquinoline) aluminum (III). J Am Chem Soc 122(21):5147–5157

    Article  CAS  Google Scholar 

  • Burrows PE, Shen Z, Bulovic V, McCarty DM, Forrest SR, Cronin JA, Thompson ME (1996) Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. J Appl Phys 79(10):7991–8006

    Article  CAS  Google Scholar 

  • Chan M-Y, Lai S-L, Lau K-M, Fung M-K, Lee C-S, Lee S-T (2007) Influences of connecting unit architecture on the performance of tandem organic light-emitting devices. Adv Funct Mater 17(14):2509–2514

    Article  CAS  Google Scholar 

  • Chen BJ, Lai WY, Gao ZQ, Lee CS, Lee ST, Gambling WA (1999) Electron drift mobility and electroluminescent efficiency of tris (8-hydroxyquinolinolato) aluminum. Appl Phys Lett 75(25):4010–4012

    Article  CAS  Google Scholar 

  • Chen W, Peng Q, Li Y (2008) Alq3 nanorods: promising building blocks for optical devices. Adv Mater 20(14):2747–2750

    Article  CAS  Google Scholar 

  • Chiu J-J, Wang W-S, Kei C-C, Perng T-P (2003a) Tris-(8-hydroxyquinoline) aluminum nanoparticles prepared by vapor condensation. Appl Phys Lett 83(2):347–349

    Article  CAS  Google Scholar 

  • Chiu J-J, Kei C-C, Perng T-P, Wang W-S (2003b) Organic semiconductor nanowires for field emission. Adv Mater 15(16):1361–1364

    Article  CAS  Google Scholar 

  • Cho C-P, Perng T-P (2006) Decreased phase transition temperatures of Alq3 nanoparticles. Nanotechnology 17(15):3756

    Article  CAS  Google Scholar 

  • Cho C-P, Perng T-P (2007) Field emission of Alq3 nanoprotrusions. Nanotechnology 18(12):125202

    Article  CAS  Google Scholar 

  • Cho C-P, Perng T-P (2010) On the dendritic growth and field emission of amorphous AlQ3 nanowires. Org Electron 11(1):115–122

    Article  CAS  Google Scholar 

  • Cho C-P, Chung-Yi Yu, Perng T-P (2006a) Growth of AlQ3 nanowires directly from amorphous thin film and nanoparticles. Nanotechnology 17(21):5506

    Article  CAS  Google Scholar 

  • Cho C-P, Wu C-A, Perng T-P (2006b) Crystallization of amorphous tris (8-hydroxyquinoline) aluminum nanoparticles and transformation to nanowires. Adv Funct Mater 16(6):819–823

    Article  CAS  Google Scholar 

  • Chung J, Lim H, Kim J, Hyon J, Seo C, Nam J, Kwon T, Kang Y (2014) Alq3 nanorod arrays by temperature-gradient-assisted eutectic melting and crystallization. Mater Lett 137:156–159

    Article  CAS  Google Scholar 

  • Cölle M, Brütting W (2004) Thermal, structural and photophysical properties of the organic semiconductor Alq3. Phys Status Sol (a) 201(6):1095–1115

    Article  CAS  Google Scholar 

  • Cölle M, Dinnebier RE, Brütting W (2002) The structure of the blue luminescent δ-phase of tris (8-hydroxyquinoline) aluminium (iii)(Alq 3). Chem Commun 23:2908–2909

    Article  Google Scholar 

  • Cölle M, Gmeiner J, Milius W, Hillebrecht H, Brütting W (2003a) Preparation and characterization of blue-luminescent tris (8-hydroxyquinoline)-aluminum (Alq3). Adv Funct Mater 13(2):108–112

    Article  Google Scholar 

  • Cölle M, Forero-Lenger S, Gmeiner J, Brütting W (2003b) Vibrational analysis of different crystalline phases of the organic electroluminescent material aluminium tris (quinoline-8-olate)(Alq3). Phys Chem Chem Phys 5(14):2958–2963

    Article  Google Scholar 

  • Colle M, Gmeiner J, Milius W, Hillebrecht H, Brutting W (2003) Preparation and characterization of blue-luminescent tris (8-hydroxyquinoline) aluminum (Alq3). Adv Funct Mater 13(2):108–112

    Article  CAS  Google Scholar 

  • Credo GM, Buratto SK (2000) Near-field fluorescence microscopy of tris-8-hydroxyquinoline aluminum films. Adv Mater 12(3):183–186

    Article  CAS  Google Scholar 

  • Cross C, Cervini L, Halcovitch NR, Griffin JM (2021) Solid‐state nuclear magnetic resonance study of polymorphism in tris (8‐hydroxyquinolinate) aluminium. Magn Reson Chem

  • Curioni A, Andreoni W (1999) Metal−Alq3 complexes: the nature of the chemical bonding. J Am Chem Soc 121(36):8216–8220

    Article  CAS  Google Scholar 

  • Curioni A, Boero M, Andreoni W (1998) Alq3: ab initio calculations of its structural and electronic properties in neutral and charged states. Chem Phys Lett 294(4–5):263–271

    Article  CAS  Google Scholar 

  • Doan VD, Le TTN, Dao MU, Vo T-TT, Do HH, Viet DQ, Tran VA (2021) Efficient photocatalytic degradation of crystal violet under natural sunlight using Fe3O4/ZnO nanoparticles embedded carboxylate-rich carbon. Mater Lett 283:128749

    Article  CAS  Google Scholar 

  • Drew AJ, Pratt FL, Hoppler J, Schulz L, Malik-Kumar V, Morley NA, Desai P et al (2008) Intrinsic mobility limit for anisotropic electron transport in Alq 3. Phys Rev Lett 100(11):116601

    Article  CAS  Google Scholar 

  • Duan L, Yang H, Wang G, Duan Yu (2021) Preparation of 8-hydroxyquinoline aluminum nanomaterials to enhance properties for green organic light-emitting diode devices. J Soc Inf Display 29(6):466–475

    Article  CAS  Google Scholar 

  • Fishchuk II, Kadashchuk A, Bässler H, Nešpůrek S (2003) Nondispersive polaron transport in disordered organic solids. Phys Rev B 67(22):224303

    Article  CAS  Google Scholar 

  • Fujii I, Hirayama N, Ohtani J, Kodama K (1996) Crystal structure of tris (8-quinolinolato) aluminum (III)-ethyl acetate (1/05). Analyt Sci 12(1):153–154

    Article  CAS  Google Scholar 

  • Gu J, Yin B, Fu S, Jin C, Liu X, Bian Z, Li J, Wang L, Li X (2018) Controlled self-assembly of low-dimensional Alq3 nanostructures from 1D nanowires to 2D plates via intermolecular interactions. Electron Mater Lett 14(2):181–186

    Article  CAS  Google Scholar 

  • Hieu VQ, Phung TK, Nguyen T-Q, Khan A, Doan VD, Tran VA (2021) Photocatalytic degradation of methyl orange dye by Ti3C2–TiO2 heterojunction under solar light. Chemosphere 276:130154

    Article  CAS  Google Scholar 

  • Ikram M, Hassan J, Imran M, Haider J, Ul-Hamid A, Shahzadi I, Ikram M, Raza A, Qumar U, Ali S (2020) 2D chemically exfoliated hexagonal boron nitride (hBN) nanosheets doped with Ni: synthesis, properties and catalytic application for the treatment of industrial wastewater. Appl Nanosci 10:3525–3528

    Article  CAS  Google Scholar 

  • Jabbour GE, Kawabe Y, Shaheen SE, Wang JF, Morrell MM, Kippelen B, Peyghambarian N (1997) Highly efficient and bright organic electroluminescent devices with an aluminum cathode. Appl Phys Lett 71:1762–1764

    Article  CAS  Google Scholar 

  • Jayappa MD, Ramaiah CK, Kumar MAP, Suresh D, Prabhu A, Devasya RP, Sheikh S (2020) Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Appl Nanosci 10(8):3057–3074

    Article  CAS  Google Scholar 

  • Jiang F, Pang Z, Yuan H, Wei Z, Xie W, Zongyong Wu, Han S (2016) Room temperature ferromagnetic properties of dysprosium-doped tris (8-hydroxyquinoline) aluminum: experimental and theoretical investigation. RSC Adv 6(49):43780–43785

    Article  CAS  Google Scholar 

  • Johansson N, Osada T, Stafström S, Salaneck WR, Parente V, Dos Santos DA, Crispin X, Brédas J-L (1999) Electronic structure of tris (8-hydroxyquinoline) aluminum thin films in the pristine and reduced states. J Chem Phys 111(5):2157–2163

    Article  CAS  Google Scholar 

  • Jung JS, Lee JW, Seo MR, Lee HS, Kim J, Lee SW, Joo J (2012) Luminescence variation of organic Alq3 nanoparticles on the surface of Au nanoparticles and graphene. Synth Metals 162(21–22):1852–1857

    Article  CAS  Google Scholar 

  • Kadem BY, Hassan AK, Cranton W (2015) Enhancement of power conversion efficiency of P3HT: PCBM solar cell using solution processed Alq3 film as electron transport layer. J Mater Sci: Mater Electron 26(6):3976–3983

    CAS  Google Scholar 

  • Kaji H, Kusaka Y, Onoyama G, Horii F (2005) Relationships between light-emitting properties and different isomers in polymorphs of tris (8-hydroxyquinoline) aluminum (III)(Alq3) analyzed by solid-state 27Al NMR and density functional theory (DFT) calculations. Jpn J Appl Phys 44(6R):3706

    Article  CAS  Google Scholar 

  • Kaji H, Kusaka Y, Onoyama G, Horii F (2006) CP/MAS 13C NMR characterization of the isomeric states and intermolecular packing in tris (8-hydroxyquinoline) aluminum (III)(Alq3). J Am Chem Soc 128(13):4292–4297

    Article  CAS  Google Scholar 

  • Kalyani NT, Dhoble SJ (2012) Organic light emitting diodes: energy saving lighting technology—a review. Renew Sustain Energy Rev 16(5):2696–2723

    Article  CAS  Google Scholar 

  • Katakura R, Koide Y (2006) Configuration-specific synthesis of the facial and meridional isomers of tris (8-hydroxyquinolinate) aluminum (Alq3). Inorg Chem 45(15):5730–5732

    Article  CAS  Google Scholar 

  • Kelsall R, Hamley IW, Geoghegan M (eds) (2005) Nanoscale science and technology. Wiley, New York

    Google Scholar 

  • Kepler RG, Beeson PM, Jacobs SJ, Anderson RA, Sinclair MB, Valencia VS, Cahill PA (1995) Electron and hole mobility in tris (8-hydroxyquinolinolato-N1, O8) aluminum. Appl Phys Lett 66(26):3618–3620

    Article  CAS  Google Scholar 

  • Khan M, Khan ZH (2014) Studies on Alq3 nanorods. Adv Sci Lett 20(7–8):1692–1694

    Article  Google Scholar 

  • Khan MB, Khan ZH (2017) Ag-incorporated Alq3 nanowires: Promising material for organic luminescent devices. J Luminesc 188:418–422

    Article  CAS  Google Scholar 

  • Khan MB, Ahmad S, Parwaz M, Khan ZH (2018) Synthesis and characterization of Au incorporated Alq3 nanowires. AIP Conf Proc 1953(1):030263

    Article  CAS  Google Scholar 

  • Khan MB, Ahmad S, Azim M, Salah N, Khan ZH (2019) Highly luminescent Alq3: Zn nanowires. Mater Res Express 6(10):105052

    Article  CAS  Google Scholar 

  • Kim K, Hong K, Kim S, Lee J-L (2012) Doping mechanism and electronic structure of alkali metal doped tris (8-hydroxyquinoline) aluminum. J Phys Chem C 116(16):9158–9165

    Article  CAS  Google Scholar 

  • Knox JE, Halls MD, Hratchian HP, Schlegel HB (2006) Chemical failure modes of AlQ3-based OLEDs: AlQ3 hydrolysis. Phys Chem Chem Phys 8(12):1371–1377

    Article  CAS  Google Scholar 

  • Kochuveedu ST, Kim DH (2014) Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale 6(10):4966–4984

    Article  CAS  Google Scholar 

  • Kwon S, Kim SC, Kim Y, Lee J-G, Kim S, Jeong K (2001) Photoemission spectroscopy study of Alq3 and metal mixed interfaces. Appl Phys Lett 79(27):4595–4597

    Article  CAS  Google Scholar 

  • Lee CB, Uddin A, Hu X, Anderssonb TG (2004) Study of Alq3 thermal evaporation rate effects on the OLED. Mater Sci Eng B 112(1):14–18

    Article  CAS  Google Scholar 

  • Lee T, Chang SC, Peng JF (2010) Tris (8-hydroxyquinoline) aluminum (III)(Alq3) nanowires templated from an eggshell membrane. Thin Solid Films 518(19):5488–5493

    Article  CAS  Google Scholar 

  • Lewinska G, Sanetra J, Marszalek KW (2021) Application of quinoline derivatives in third-generation photovoltaics. J Mater Sci Mater Electron 32(14):18451–18465

    Article  CAS  Google Scholar 

  • Lim JT, Kim KN, Yeom GY (2009) Device characteristics of organic light-emitting diodes based on electronic structure of the Ba-doped Alq3 layer. J Nanosci Nanotechnol 9(12):7485–7490

    CAS  Google Scholar 

  • Lo MF, Ng TW, Lai SL, Wong FL, Fung MK, Lee ST, Lee CS (2010) Operation stability enhancement in organic photovoltaic device by a metal doped organic exciton blocking layer. Appl Phys Lett 97(14):217

    Article  CAS  Google Scholar 

  • Ma D, Zhang J, Xiaokai Hu, Zhou H, Qian Y (2007) Surfactant-assisted hydrothermal route to organometallic tris (8-hydroxyquinoline) aluminum nanorod bundles. Chem Lett 36(5):630–631

    Article  CAS  Google Scholar 

  • Malliaras GG, Shen Y, Dunlap DH, Murata H, Kafafi ZH (2001) Nondispersive electron transport in Alq 3. Appl Phys Lett 79(16):2582–2584

    Article  CAS  Google Scholar 

  • Moliton A, Rammal W, Lucas B (2006) Field and temperature effects on the electronic mobility in Alq3 structures. Eur Phys J Appl Phys 33(3):175–182

    Article  CAS  Google Scholar 

  • Mori T, Miyake S, Mizutani T (1995) Carrier transport and carrier trap of 8-hydroxyquinoline aluminium thin films. Jpn J Appl Phys 34(8R):4120

    Article  CAS  Google Scholar 

  • Mu H, Klotzkin D, De Silva A, Wagner HP, White D, Sharpton B (2008) Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq3 in OLED. J Phys D Appl Phys 41(23):235109

    Article  CAS  Google Scholar 

  • Muccini M, Loi MA, Kenevey K, Zamboni R, Masciocchi N, Sironi A (2004) Blue luminescence of facial tris (quinolin-8-olato) aluminum (III) in solution, crystals, and thin films. Adv Mater 16(11):861–864

    Article  CAS  Google Scholar 

  • Naka S, Okada H, Onnagawa H, Yamaguchi Y, Tsutsui T (2000) Carrier transport properties of organic materials for EL device operation. Synth Met 111:331–333

    Article  Google Scholar 

  • Nguyen V-H, Thi Vo T-T, Do HH, Nguyen TD, Vo TK, Nguyen B-S, Nguyen TT, Phung TK, Tran VA (2021) Ag@ ZnO porous nanoparticle wrapped by rGO for the effective CO2 electrochemical reduction. Chem Eng Sci 232:116381

    Article  CAS  Google Scholar 

  • Nüesch F, Berner D, Tutiš E, Schaer M, Ma C, Wang X, Zhang BA, Zuppiroli L (2005) Doping-induced charge trapping in organic light-emitting devices. Adv Funct Mater 15(2):323–330

    Article  CAS  Google Scholar 

  • Part H, Noh SH, Yun JJ, Han TH (2014) Vertical arrays of photoluminescent Alq3 nanotubes on flexible substrates by vapor deposition. Mol Cryst Liquid Cryst 602(1):193–199

    Article  CAS  Google Scholar 

  • Parthasarathy G, Shen C, Kahn A, Forrest SR (2001) Lithium doping of semiconducting organic charge transport materials. J Appl Phys 89(9):4986–4992

    Article  CAS  Google Scholar 

  • Pi T-W, Yu TC, Ouyang C-P, Wen J-F, Hsu HL (2005) Electronic structure of tris (8-hydroxyquinolato) aluminum at room temperature and during annealing. Phys Rev B 71(20):205310

    Article  CAS  Google Scholar 

  • Rajeswaran M, Blanton TN (2005) Single-crystal structure determination of a new polymorph (ε-Alq 3) of the electroluminescence OLED (organic light-emitting diode) material, tris (8-hydroxyquinoline) aluminum (Alq 3). J Chem Crystallogr 35(1):71–76

    Article  CAS  Google Scholar 

  • Rajeswaran M, Blanton TN, Tang CW, Lenhart WC, Switalski SC, Giesen DJ, Antalek BJ et al (2009) Structural, thermal, and spectral characterization of the different crystalline forms of Alq3, tris (quinolin-8-olato) aluminum (III), an electroluminescent material in OLED technology. Polyhedron 28(4):835–843

    Article  CAS  Google Scholar 

  • Saeed A, Alshahrie A, Salah N (2020) Fabrication of highly efficient organic light-emitting diode based on dysprosium-incorporated tris-(8-hydroxyquinoline) aluminum. J Mater Sci Mater Electron 31(24):22179–22189

    Article  CAS  Google Scholar 

  • Saeed A, Salah N, Alshahrie A, Baghdadi N, Gauthaman K, Memic A (2021a) Tunable fabrication of rice-like nanostructures aggregated into flowers of Alq3 with negligible photo-degradation for potential biomedical applications. Mater Chem Phys 259:124080

    Article  CAS  Google Scholar 

  • Saeed A, Al-Buriahi MS, Razvi MAN, Salah N, Al-Hazmi FE (2021b) Electrical and dielectric properties of meridional and facial Alq 3 nanorods powders. J Mater Sci Mater Electron 32(2):2075–2087

    Article  CAS  Google Scholar 

  • Salah N, Habib SS, Khan ZH, Alharbi ND (2013a) Synthesis and characterization of pure and Tb/Cu doped Alq3 nanostructures. J Lumin 143:640–644

    Article  CAS  Google Scholar 

  • Salah N, Habib SS, Khan ZH (2013b) Highly luminescent material based on Alq 3: Ag nanoparticles. J Fluoresc 23(5):1031–1037

    Article  CAS  Google Scholar 

  • Schmechel R, Von Seggern H (2004) Electronic traps in organic transport layers. Phys Status Sol (a) 201(6):1215–1235

    Article  CAS  Google Scholar 

  • Schmidbaur H, Lettenbauer J, Wilkinson DL, Müller G, Kumberger O (1991) Modellsysteme für die Gallium-Extraktion, I. Struktur und Moleküldynamik von Aluminium-und Galliumtris (oxinaten). Zeitschrift Für Naturforschung B 46(7):901–911

    Article  CAS  Google Scholar 

  • Shinar J (ed) (2013) Organic light-emitting devices: a survey. Springer Science & Business Media, New York

    Google Scholar 

  • Su S-H, Hou C-C, Shieh R-S, Yokoyama M (2008) Enhancing efficiency of organic light-emitting diodes using lithium-doped electron transport layer. Jpn J Appl Phys 47(4S):3193

    Article  CAS  Google Scholar 

  • Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51(12):913–915

    Article  CAS  Google Scholar 

  • Tran VA, Kadam AN, Lee S-W (2020) Adsorption-assisted photocatalytic degradation of methyl orange dye by zeolite-imidazole-framework-derived nanoparticles. J Alloys Compd 835:155414

    Article  CAS  Google Scholar 

  • Tran VA, Vu KB, Vo T-TT, Do HH, Bach LG, Lee S-W (2021) Experimental and computational investigation on interaction mechanism of Rhodamine B adsorption and photodegradation by zeolite imidazole frameworks-8. Appl Surf Sci 538:148065

    Article  CAS  Google Scholar 

  • Tran VA, Phung TK, Vo TK, Nguyen TT, Nguyen TAN, Viet DQ, Hieu VQ, Vo T-TT (2021) Solar-light-driven photocatalytic degradation of methyl orange dye over Co3O4-ZnO nanoparticles. Mater Lett 284:128902

    Article  CAS  Google Scholar 

  • Wang FJ, Xiong ZH, Wu D, Shi J, Valy-Vardeny Z (2005) Organic spintronics: the case of Fe/Alq3/Co spin-valve devices. Synth Met 155(1):172–175

    Article  CAS  Google Scholar 

  • Wang F, Pang Z, Lin L, Fang S, Dai Y, Han S (2010) Magnetism in Co-doped tris-8-hydroxyquinoline aluminum studied by first-principles calculations. Appl Phys Lett 96(5):21

    Google Scholar 

  • Xie W, Pang Z, Fan J, Song H, Jiang F, Yuan H, Li J, Ji Z, Han S (2015) Structural properties of Alq 3 nanocrystals prepared by physical vapor deposition and facile solution method. Int J Mod Phys B 29(25–26):1542042

    Article  CAS  Google Scholar 

  • Xie W, Fan J, Song H, Jiang F, Yuan H, Wei Z, Ji Z, Pang Z, Han S (2016) Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure. Phys E 84:519–523

    Article  CAS  Google Scholar 

  • Xu G, Tang Y-B, Tsang C-H, Zapien J-A, Lee C-S, Wong N-B (2010) Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties. J Mater Chem 20(15):3006–3010

    Article  CAS  Google Scholar 

  • Yang J, Chen Y, Zhang X, Ou X, Zhang X (2011) Facile and green fabrication of organic single-crystal hollow micro/nanostructures. Nanotechnology 22(28):285606

    Article  CAS  Google Scholar 

  • Zawadzka A, Płóciennik P, Strzelecki J, Łukasiak Z, Sahraoui B (2013) Photophysical properties of Alq3 thin films. Opt Mater 36(1):91–97

    Article  CAS  Google Scholar 

  • Zhang D-D, Wang R, Ma Y-Y, Wei H-X, Qing-Dong Ou, Wang Q-K, Zhou L, Lee S-T, Li Y-Q, Tang J-X (2014) Realizing both improved luminance and stability in organic light-emitting devices based on a solution-processed inter-layer composed of MoOX and Au nanoparticles mixture. Org Electron 15(4):961–967

    Article  CAS  Google Scholar 

  • Zhang F, Wang C, Yin K, Dong X, Song Y, Tian Y, Duan J (2017) Investigation on optical and photoluminescence properties of organic semiconductor Al-Alq 3 thin films for organic light-emitting diodes application. Chin Opt Lett 15(11):111602

    Article  CAS  Google Scholar 

  • Zhao YS, Di C, Yang W, Yu G, Liu Y, Yao J (2006) Photoluminescence and electroluminescence from tris (8-hydroxyquinoline) aluminum nanowires prepared by adsorbent-assisted physical vapor deposition. Adv Funct Mater 16(15):1985–1991

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Mohammad Bilal Khan) is thankful to Council for Scientific and Industrial Research, Govt. of India for providing research support in the form of Research Associateship (RA File No: 09/0466(11082)/2021-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zishan H. Khan.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest. Manuscript is thoroughly read and approved by all the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.B., Salah, N. & Khan, Z.H. Functional enhancement in Alq3 via metal doping and nanoscale synthesis: a review. Appl Nanosci 12, 1365–1385 (2022). https://doi.org/10.1007/s13204-022-02348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02348-2

Keywords

Navigation