Skip to main content

Advertisement

Log in

Toxic effects of zinc oxide nanoparticles and histopathological and caspase-9 expression changes in the liver and lung tissues of male mice model

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In this study, the toxic effects of zinc oxide nanoparticles (ZnONPs) at different doses and periods were evaluated, and the histopathological changes and caspase-9 and -8 expression levels in liver and lung tissues of thirty-three male mice model, were determined. The mice model was divided into the treatment groups which were injected intraperitoneally with 0.5 ml of ZnONPs (100 and 300 mg/kg) for 15, 20, and 25 days; and a control group that was injected with 0.5 ml of 0.9% physiological solution for 15, 20, and 25 days. The ZnONPs were shown to cause histopathological effects in the liver and lung tissues which include reversible changes such as hypertrophy, degeneration, and others that were diagnostic in histological sections; and irreversible changes like necrosis. The ZnONPs at 300 mg/kg after 25 days had caused a significant decrease in caspase-9 expression levels (two–fourfold lower than Control) in both liver and lung tissues. However, there was no significant difference in caspase-8 in both liver and lung tissues, suggesting that the intrinsic pathway of apoptosis, rather than the extrinsic pathway, may be inhibited. ZnONPs were, therefore, exhibited to inhibit programmed cell death, and also induced irreversible phenotypic necrosis, in a dose- and time-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AlMaliki SJ (2000) A behavior and some physiological effect of (Apium graveolens) seeds in albino mice. J Sci Bas 18(2):77–88

    Google Scholar 

  • Alferah MA (2018) Histological changes of male westar rats liver following the ingestion of zinc oxide nanoparticles with special emphasis on the histochemical alterations. J Histol Histopathol 5(4):1−6

    Google Scholar 

  • Almansour M, Alferah M, Shraideh Z, Jarrar B (2017) Zinc oxide nanoparticles hepatotoxicity: histological and histochemical study. Environ Toxicol Pharmacol 51:124–130

    CAS  Google Scholar 

  • Attia H, Nounou H, Shalaby M (2018) Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics 6(2):29

    Google Scholar 

  • Böhm I, Schild H (2003) Apoptosis: the complex scenario for a silent cell death. Mol Imag Biolog 5(1):2–14

    Google Scholar 

  • Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:32

    CAS  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    CAS  Google Scholar 

  • Denning DP, Hatch V, Horvitz HR (2013) Both the caspase CSP-1 and a caspase-independent pathway promote programmed cell death in parallel to the canonical pathway for apoptosis in Caenorhabditis elegans. PLoS Genet 9(3):e1003341

    CAS  Google Scholar 

  • Ding WX et al (2000) Critical role of reactive oxygen species and mitochondria permeability transition in microcystic induced rapid apoptosis in rat hepatocytes. Hepatol 32(3):547–555

    CAS  Google Scholar 

  • Elbakary RH, Okasha EF, Ragab AMH, Ragab MH (2018) Histological effects of gold nanoparticles on the lung tissue of adult male albino rats. J Microsc Ultrastruct 6(2):116–122

    Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    CAS  Google Scholar 

  • Hall AP et al (2012) Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes—conclusions from the 3rd international ESTP expert workshop. Toxicol Pathol 40(7):971–994

    CAS  Google Scholar 

  • Han Z, Yan Q, Ge W, Liu ZG, Gurunathan S et al (2016) Cytotoxic effects of ZnO nanoparticles on mouse testicular cells. Int J Nanomed 11:5187–5203

    CAS  Google Scholar 

  • Hegazy AA, Ahmed MM, Shehata MA, Abdelfattah MM (2018) Changes in rats’ liver structure induced by zinc oxide nanoparticles and the possible protective role of vitamin E. Int J Human Anat 1(3):1–16

    Google Scholar 

  • Hosseini SM, Amani R, Moshrefi AH, Razavimehr SV, Aghajanikhah MH, Sokouti Z (2020) Chronic zinc oxide nanoparticles exposure produces hepatic and pancreatic impairment in female rats. Iran J Toxicol 14(3):145–154

    CAS  Google Scholar 

  • Hu LS, George J, Wang JH (2013) Current concepts on the role of nitric oxide in portal hypertension. World J Gastroenterol 19(11):1707–1717

    CAS  Google Scholar 

  • Humason GL (1972) Animal tissue techniques, 3rd edn., W H Freeman, San Francisco

    Google Scholar 

  • Hussein HA, Abdullah MA (2021) Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. Appl Nanosci. https://doi.org/10.1007/s13204-021-02018-9

    Article  Google Scholar 

  • Hussein HA, Maulidiani M, Abdullah MA (2020a) Microalgal metabolites as anti-cancer/anti-oxidant agents reduce cytotoxicity of elevated silver nanoparticle levels against non-cancerous vero cells. Heliyon 6:e05263. https://doi.org/10.1016/j.heliyon.2020.e05263

    Article  Google Scholar 

  • Hussein HA, Mohamad H, Ghazaly MM, Laith AA, Abdullah MA (2020b) Cytotoxic effects of Tetraselmis suecica chloroform extracts with silver nanoparticle co-application on MCF-7, 4 T1, and vero cell lines. J Appl Phycol 32:127–143

    CAS  Google Scholar 

  • Hussein HA, Mohamad H, Ghazaly MM, Laith AA, Abdullah MA (2020c) Anticancer and antioxidant activities of Nannochloropsis oculata and Chlorella sp. extracts in co-application with silver nanoparticle. J King Saud Univ Sci 32(8):3486–3494. https://doi.org/10.1016/j.jksus.2020.10.011

    Article  Google Scholar 

  • Jia L et al (2017) Ion-shedding zinc oxide nanoparticles induce microglial BV2 cell proliferation via the ERK and Akt signaling pathways. Toxicol Sci 156(1):167–178

    Google Scholar 

  • Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2(3):1–18

    Google Scholar 

  • Jorgensen I, Rayamajhi M, Mioa EA (2017) Programmed cell death as a defence against infection. Nat Rev Immunol 17(3):151–164

    CAS  Google Scholar 

  • Khalaf AA, Hassanen E, Azouz RA, Zaki AR, Ibrahim MA, Farroh KY, Galal MK (2019) Ameliorative effect of zinc oxide nanoparticles against dermal toxicity induced by lead oxide In rats. Int J Nanomed 14:7729–7741

    CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arabian J Chem 12(7):908–931

    CAS  Google Scholar 

  • Kim SJ, Kim HS, Seo YR (2019) Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev 2019:5381692

    Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    CAS  Google Scholar 

  • Loreto C, La Rocca G, Anzalone R, Caltabiano R (2014) The role of intrinsic pathway in apoptosis activation and progression in Peyronie’s disease. J Biomed Biotechnol 2014:616149

    Google Scholar 

  • Mitra S, Nguyen LN, Akter M, Park G et al (2019) Impact of ROS generated by chemical, physical, and plasma techniques on cancer attenuation. Cancers (Basel) 11(7):1030

    Google Scholar 

  • Mobarak YM, Sharaf MM (2011) Lead acetate-induced histopathological changes in the gills and digestive system of silver Sailfin molly (Poecilia latipinna). Int J Zoolog Res 7(1):1–18

    CAS  Google Scholar 

  • Neyrinck A (2004) Modulation of Kupffer cell activity: physio-pathological consequences on hepatic metabolism. Bull Mem Acad R Med Belg 159(5–6):358–366

    CAS  Google Scholar 

  • Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin TT, Yu VL, Miller DK (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    CAS  Google Scholar 

  • Noori A, Karimi F, Soheil F, Fereshteh Y (2014) Effects of zinc oxide nanoparticles on renal function in mice. Int J Biosci 5(9):140–146

    Google Scholar 

  • Norbury CJ, Hickson ID (2001) Cellular responses to DNA damage. Ann Rev Pharmacol Toxicol 41(1):367–401

    CAS  Google Scholar 

  • Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 5(6):008672

    Google Scholar 

  • Perillo B, Di Donato M, Pezone A, Di Zazzo E et al (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52:192–203

    CAS  Google Scholar 

  • Ping L, Libin Z, Ting Z, Xiongxiong L, Pengcheng Z, Yan L, Xiaogang Z, Qiang L (2017) Caspase-9: structure, mechanisms and clinical application. Oncotarget 8(14):23996–24008

    Google Scholar 

  • Pinho AR, Martins F, Costa MEV et al (2020) In Vitro cytotoxicity effects of zinc oxide nanoparticles on spermatogonia cells. Cells 9(5):1081

    CAS  Google Scholar 

  • Raducka-Jaszul O, Bogusławska DM, Jedruchniewicz N, Sikorski AF (2020) Role of extrinsic apoptotic signaling pathway during definitive erythropoiesis in normal patients and in patients with β-thalassemia. Int J Mol Sci 21(9):3325

    CAS  Google Scholar 

  • Reddy ARN, Srividya L (2018) Evaluation of In Vitro cytotoxicity of zinc oxide (ZnO) nanoparticles using human cell lines. J Toxicol Risk Assess 4:009

  • Saadi S, Hooshmandi Z (2016) The effect of short-term intraperitoneal injection of Fe2O4Zn nanoparticle on liver enzymes and tissue in male wistar laboratory rats. Int J Med Res Health Sci 5(12):92–100

    Google Scholar 

  • Salman RA (2018) Histopathological effect of zinc oxide nanoparticles on kidney and liver tissues in albino male mice. Ibn Al-Haitham J Pure Appl Sci 31(1):9–14

    Google Scholar 

  • Saman S, Saeed M, Attaollah S, Masoud G (2013) Histopathological effects of ZnO nanoparticles on liver and heart tissues in wistar rats. Adv Biores 4(2):83–88

    CAS  Google Scholar 

  • Scherzad A, Meyer T, Kleinsasser N, Hackenberg S (2017) Molecular mechanisms of zinc oxide nanoparticle—induced genotoxicity. Mater 10(12):1427

    Google Scholar 

  • Shapiro SD (2003) Proteolysis in the lung. Eur Respir J Suppl 44:30s–32s

    CAS  Google Scholar 

  • Shen J, Yang D, Zhou X, Wang Y, Tang S, Yin H, Wang J, Chen R, Chen J (2019) Role of autophagy in zinc oxide nanoparticles-induced apoptosis of mouse LEYDIG cells. Int J Mol Sci 20(16):4042

    CAS  Google Scholar 

  • Shih WW, Chien HL, Ming SL, Chih WC, Yung SH (2020) ZnO nanoparticles induced caspase-dependent apoptosis in gingival squamous cell carcinoma through mitochondrial dysfunction and p70S6K signaling pathway. Int J Mol Sci 21(5):1612

    Google Scholar 

  • Singh A, Singh NB, Afzal S, Singh T, Hussain I (2018) Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci 53(1):185–201

    CAS  Google Scholar 

  • Tang HQ et al (2016) The effect of ZnO nanoparticles on liver function in rats. Int J Nanomed 11:4275–4285

    CAS  Google Scholar 

  • Wang D et al (2017) Acute toxicological effects of zinc oxide nanoparticles in mice after intratracheal instillation. Int J Occup Environ Health 23(1):11–19

    CAS  Google Scholar 

  • Wang L, Xu H, Qiu Y, Liu X, Huang W, Yan N, Qu Z (2020) Utilization of Ag nanoparticles anchored in covalent organic frameworks for mercury removal from acidic wastewater. J Hazard Mater 389:121824

    CAS  Google Scholar 

  • Wilhelmi V et al (2013) Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS One 8(6):e65704

    CAS  Google Scholar 

  • Wu MH, Jin XK, Yu AQ, Zhu YT, Li D, Li WW et al (2014) Caspase-mediated apoptosis in crustaceans: cloning and functional characterization of EsCaspase-3-like protein from Eriocheir. Fish Shellfish Immunol 41(2):625–632. https://doi.org/10.1016/j.fsi.2014.10.017

    Article  CAS  Google Scholar 

  • Wu Y, Zhao D, Zhuang J, Zhang F, Xu C (2016) Caspase-8 and caspase-9 functioned differently at different stages of the cyclic stretch-induced apoptosis in human periodontal ligament cells. PLoS One 11(12):e0168268

    Google Scholar 

  • Xiao M (2018) Senescence and cell death in chronic liver injury: roles and mechanisms underlying hepatocarcinogenesis. Oncotarget 9(9):8772–8784

    Google Scholar 

  • Yang H, Villani RM, Wang H, Simpson MJ et al (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37:266

    CAS  Google Scholar 

  • Zhao Y et al (2015) Differential regulation of gene and protein expression by zinc oxide nanoparticles in hen’s ovarian granulosa cells: specific roles of nanoparticles. PLoS One 10(10):e0140499

    Google Scholar 

Download references

Acknowledgements

The authors thank the University of Basrah for the research facilities to carry out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Azmuddin Abdullah.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ali, A.A.A., Al-Tamimi, S.Q., Al-Maliki, S.J. et al. Toxic effects of zinc oxide nanoparticles and histopathological and caspase-9 expression changes in the liver and lung tissues of male mice model. Appl Nanosci 12, 193–203 (2022). https://doi.org/10.1007/s13204-021-02248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-02248-x

Keywords

Navigation