Skip to main content

Advertisement

Log in

Development of a new methodology to determine size differences of nanoparticles with nanoparticle tracking analysis

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The current frontiers in Biology thus in Medicine and Pharmacy are at the nanoscale. Indeed, this is the relevant scale for extracting or synthetizing, visualizing, counting, characterizing and/or modifying nanoparticles. Nanoparticles are highly diverse including: extracellular vesicles (e.g.: exosomes), proteins, viruses and nanovectors or drug delivery systems for instance. To quantify the concentration of nano-sized objects, a growing number of size-tracking instruments is being developed. However, to date, the generated data is only used to provide a concentration measurement. The objective of this study was to determine which sizes of nanoparticles are statistically significant between 2 groups of samples. Using different samples (in silico data; calibrated beads; various biological samples), an approach that statistically compares 2 groups of samples was developed and validated. The proof of concept of the proposed approach was illustrated with applications in the field of Biology, Medicine and Pharmacy using liposomes and extracellular vesicles. For the first time to our knowledge, our results suggest that the presented approach enables comparing different groups of biological samples. It may be extended to situations such as batch 1 versus batch 2; healthy versus disease or non-treated versus treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Custom code might be available from the corresponding author on reasonable request.

References

  • Alexis F et al (2008) New frontiers in nanotechnology for cancer treatment. Urol Oncol 26(1):74–85

    Article  CAS  Google Scholar 

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Article  CAS  Google Scholar 

  • Allison DB et al (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7(1):55–65

    Article  CAS  Google Scholar 

  • Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10(11):787–796

    Article  CAS  Google Scholar 

  • Barile L, Vassalli G (2017) Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther 174:63–78

    Article  CAS  Google Scholar 

  • Birmingham A et al (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6(8):569–575

    Article  CAS  Google Scholar 

  • Bolstad BM et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  CAS  Google Scholar 

  • Brossa A et al (2019) Alternative Strategies to Inhibit Tumor Vascularization. Int J Mol Sci 20(24):6180

    Article  CAS  Google Scholar 

  • Bullard JH et al (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11:94

    Article  CAS  Google Scholar 

  • Buzas EI et al (2017) Single particle analysis: Methods for detection of platelet extracellular vesicles in suspension (excluding flow cytometry). Platelets 28(3):249–255

    Article  CAS  Google Scholar 

  • Buzas EI et al (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10(6):356–364

    Article  CAS  Google Scholar 

  • Caradec J et al (2014) Reproducibility and efficiency of serum-derived exosome extraction methods. Clin Biochem 47(13–14):1286–1292

    Article  CAS  Google Scholar 

  • Caraus I et al (2015) Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions. Brief Bioinform 16(6):974–986

    Article  Google Scholar 

  • Carr BWM (2013) Nanoparticle tracking analysis: a review of applications and usage 2010–2012." NanoSight Ltd.

  • Carr BWM (2014) Nanoparticle tracking analysis: a review of the first 1,000 reports of applications and usage of NTA. Malvern Instruments Ltd.

  • Chiang CY, Chen C (2019) Toward characterizing extracellular vesicles at a single-particle level. J Biomed Sci 26(1):9

    Article  Google Scholar 

  • Coumans FAW et al (2017) Methodological Guidelines to Study Extracellular Vesicles. Circ Res 120(10):1632–1648

    Article  CAS  Google Scholar 

  • Couvreur P et al (2006) Squalenoyl nanomedicines as potential therapeutics. Nano Lett 6(11):2544–2548

    Article  CAS  Google Scholar 

  • Dai Y et al (2021) Unbiased RNA-Seq-driven identification and validation of reference genes for quantitative RT-PCR analyses of pooled cancer exosomes. BMC Genomics 22(1):27

    Article  CAS  Google Scholar 

  • Dill KB, S, (2003) Molecular driving forces: statistical thermodynamics in chemistry and biology. Garland Science, New York

    Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478

    Article  CAS  Google Scholar 

  • Draghici S (2002) Statistical intelligence: effective analysis of high-density microarray data. Drug Discov Today 7(11):S55-63

    Article  CAS  Google Scholar 

  • Dragovic RA et al (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7(6):780–788

    Article  CAS  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  CAS  Google Scholar 

  • Filipe V et al (2010) Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810

    Article  CAS  Google Scholar 

  • Foteini P et al (2019) Physicochemical study of the protein-liposome interactions: influence of liposome composition and concentration on protein binding. J Liposome Res 29(4):313–321

    Article  Google Scholar 

  • Geeurickx E et al (2019) The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun 10(1):3288

    Article  CAS  Google Scholar 

  • Gobbo J et al. (2016) Restoring Anticancer Immune Response by Targeting Tumor-Derived Exosomes With a HSP70 Peptide Aptamer. J Natl Cancer Inst 108(3).

  • Goetzl EJ et al (2020) Traumatic brain injury increases plasma astrocyte-derived exosome levels of neurotoxic complement proteins. Faseb J 34(2):3359–3366

    Article  CAS  Google Scholar 

  • Gorji-Bahri G et al. (2021) Validation of common reference genes stability in exosomal mRNA-isolated from liver and breast cancer cell lines. Cell Biol Int.

  • Gunasekaran PM et al. (2019) For what factors should we normalize urinary extracellular mRNA biomarkers? Biomol Detect Quantif 17:100090.

  • Harrison SC (2010) Virology. Looking inside adenovirus. Science 329(5995):1026–1027

    Article  CAS  Google Scholar 

  • Heath JR, Davis ME (2008) Nanotechnology and cancer. Annu Rev Med 59:251–265

    Article  CAS  Google Scholar 

  • Iyer AK et al (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818

    Article  CAS  Google Scholar 

  • Kamerkar S et al (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546(7659):498–503

    Article  CAS  Google Scholar 

  • Keerthikumar S et al (2016) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 428(4):688–692

    Article  CAS  Google Scholar 

  • Konkoth A et al (2021) Multifaceted role of extracellular vesicles in atherosclerosis. Atherosclerosis 319:121–131

    Article  CAS  Google Scholar 

  • Koritzinsky EH et al (2019) Circadian variation in the release of small extracellular vesicles can be normalized by vesicle number or TSG101. Am J Physiol Renal Physiol 317(5):F1098–F1110

    Article  CAS  Google Scholar 

  • Koritzinsky EH et al (2017) Quantification of exosomes. J Cell Physiol 232(7):1587–1590

    Article  CAS  Google Scholar 

  • Krzywinski M, Altman N (2014) Points of significance: comparing samples-part I. Nat Methods 11(3):215–216

    Article  CAS  Google Scholar 

  • Livshits MA et al (2015) Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep 5:17319

    Article  CAS  Google Scholar 

  • Lombardo D et al (2019) Colloidal stability of liposomes. AIMS Materials Science 6(2):200–213

    Article  CAS  Google Scholar 

  • Malo N et al (2006) Statistical practice in high-throughput screening data analysis. Nat Biotechnol 24(2):167–175

    Article  CAS  Google Scholar 

  • Moghimi SM, Kissel T (2006) Particulate nanomedicines. Adv Drug Deliv Rev 58(14):1451–1455

    Article  CAS  Google Scholar 

  • Momen-Heravi F et al (2012) Alternative methods for characterization of extracellular vesicles. Front Physiol 3:354

    CAS  Google Scholar 

  • O'Loghlen A (2018). Role for extracellular vesicles in the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci 373(1737).

  • Otake K et al (2021) Quantitative comparison of the mRNA content of human iPSC-derived motor neurons and their extracellular vesicles. FEBS Open Bio 11(2):494–506

    Article  CAS  Google Scholar 

  • Pathan M et al (2017) A novel community driven software for functional enrichment analysis of extracellular vesicles data. J Extracell Vesicles 6(1):1321455

    Article  Google Scholar 

  • Pellequer Y et al (2003) Methodology for assaying recombinant interleukin-2 associated with liposomes by combined gel exclusion chromatography and fluorescence. J Chromatogr B Analyt Technol Biomed Life Sci 783(1):151–162

    Article  CAS  Google Scholar 

  • Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2(6):418–427

    Article  CAS  Google Scholar 

  • Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501

    Article  CAS  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  Google Scholar 

  • Ries E. (2011). "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Currency: 336.

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25

    Article  CAS  Google Scholar 

  • Rodrigues M et al (2019) Rapid lipid-based approach for normalization of quantum-dot-detected biomarker expression on extracellular vesicles in complex biological samples. Nano Lett 19(11):7623–7631

    Article  CAS  Google Scholar 

  • Seigneuric R et al (2016) Tumor exosomes: potential biomarkers and targets in Cancer. J Clin Cell Immunol 7:472

    Google Scholar 

  • Seigneuric R, Garrido C (2016). "Tumor-derived extracellular vesicles: protocols, models and clinical evidence. Front Oncol

  • Seigneuric R, Garrido C (2016b) Tumor-derived extracellular vesicles: protocols, models, and clinical evidence. Front Oncol 6:230

    Article  Google Scholar 

  • Seigneuric R et al. (2011) Targeting cancer with peptide aptamers. Oncotarget.

  • Seigneuric R et al (2010) From Nanotechnology to Nanomedicine: applications to cancer research. Curr Mol Med 10(7):640–652

    Article  CAS  Google Scholar 

  • Serrano-Pertierra E et al. (2020) Extracellular Vesicles: Current Analytical Techniques for Detection and Quantification. Biomolecules 10(6).

  • Shtam T et al. (2020) Evaluation of immune and chemical precipitation methods for plasma exosome isolation. PLoS ONE 15(11): e0242732.

  • Simeone P et al. (2020) Diameters and Fluorescence Calibration for Extracellular Vesicle Analyses by Flow Cytometry. Int J Mol Sci 21(21).

  • Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    Article  CAS  Google Scholar 

  • Slonim DK (2002) From patterns to pathways: gene expression data analysis comes of age. Nat Genet 32(Suppl):502–508

    Article  CAS  Google Scholar 

  • Storey J (2002) A direct approach to false discovery rates. J r Statist Soc B 64(3):479–498

    Article  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445

    Article  CAS  Google Scholar 

  • Streit M, Gehlenborg N (2014) Bar charts and box plots. Nat Methods 11(2):117

    Article  CAS  Google Scholar 

  • Thery C et al. (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3: Unit 3 22.

  • Thery C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    Article  Google Scholar 

  • Thery C et al (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579

    Article  CAS  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  CAS  Google Scholar 

  • Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol(197): 3–53.

  • Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  Google Scholar 

  • Valkonen S et al (2017) Biological reference materials for extracellular vesicle studies. Eur J Pharm Sci 98:4–16

    Article  CAS  Google Scholar 

  • van der Pol E et al (2013) Innovation in detection of microparticles and exosomes. J Thromb Haemost 11(Suppl 1):36–45

    Google Scholar 

  • Vestad B et al (2017) Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: a variation study. J Extracell Vesicles 6(1):1344087

    Article  CAS  Google Scholar 

  • Wan Y et al (2018) Aptamer-conjugated extracellular nanovesicles for targeted drug delivery. Cancer Res 78(3):798–808

    Article  CAS  Google Scholar 

  • Welsh JA et al (2020) Towards defining reference materials for measuring extracellular vesicle refractive index, epitope abundance, size and concentration. J Extracell Vesicles 9(1):1816641

    Article  Google Scholar 

  • Whitesides GM (2003) The “right” size in nanobiotechnology. Nat Biotechnol 21(10):1161–1165

    Article  CAS  Google Scholar 

  • Wiles AM et al (2008) An analysis of normalization methods for Drosophila RNAi genomic screens and development of a robust validation scheme. J Biomol Screen 13(8):777–784

    Article  Google Scholar 

  • Yuan F et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756

    CAS  Google Scholar 

  • Zahran AM et al (2019) Circulating Microparticles in Children With Sickle Cell Anemia in a Tertiary Center in Upper Egypt. Clin Appl Thromb Hemost 25:1076029619828839

    CAS  Google Scholar 

Download references

Acknowledgements

RS thanks S. de Almeida for technical assistance and discussions and A. Bourredjem for discussions.

Funding

This work was supported by the Région Bourgogne Franche-Comté PARI (grant number 9201AAO050S01716), Ligue contre le Cancer (grant number R18032MM) and Nano2Bio and FEDER (Grant Number BG0005900). No funding sources were involved in the study design, collection, analysis, interpretation of data, writing or in the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

YP, GZa, JMR, IS, MCC, GZi, FN and RS contributed to the design of experiments. YP synthetized liposomes. All authors (YP, GZa, JMR, IS, MCC, GZi, FN and RS) contributed to data analysis and manuscript preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Renaud Seigneuric.

Ethics declarations

Conflicts of interest/Competing interests

All authors hereby declare that there is no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors agreed to publish this version of the article.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellequer, Y., Zanetta, G., Rebibou, JM. et al. Development of a new methodology to determine size differences of nanoparticles with nanoparticle tracking analysis. Appl Nanosci 11, 2129–2141 (2021). https://doi.org/10.1007/s13204-021-01932-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01932-2

Keywords

Navigation