Skip to main content
Log in

Investigation of nanoparticle effect on performance of solar membrane distillation

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Due to the lack of freshwater, membrane and thermal processes as desalination technologies are attractive and the most promising approach to generate freshwater and diminishes the lack of fresh water problems. In the present paper, the applications of titanium nitride nanofluid were optimized by Response Surface Methodology to improve consumption of energy for solar distillation. The substantial independent parameters are solar irradiation, nanofluid concentrations, time, and the dependent parameters are the feed water temperature and the weight of accumulated permeate water. Based on Response Surface Methodology modeling the first response as feed water temperature was fitted to quadratic model and the second response as accumulated permeate water weight was fitted to linear model, which the regression model R-squared of fitted models have appropriate values are 0.96 and 0.9891, respectively, and the p-value of models was < 0.0001 that represents the models are significant. Due to the fitted models and the experiments the highest value of feed water temperature and the weight of accumulated permeate water achieved 93.10 C0 and 8.65 g after 3 h, respectively, by adding the 90.7848 ppm of nanofluid concentration under 5 kW/m2 of solar irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelkareem MA, Assad MEH, Sayed ET, Soudan B (2018) Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 435:97–113

    Article  CAS  Google Scholar 

  • Ahmed FE, Hashaikeh R, Hilal N (2019) Solar powered desalination: technology, energy and future outlook. Desalination 453:54–76

    Article  CAS  Google Scholar 

  • Allen DM (1971) Mean square error of prediction as a criterion for selecting variables. Technometrics 13:469–475

    Article  Google Scholar 

  • Allen DM (1974) The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16:125–127

    Article  Google Scholar 

  • Arunkumar T, Raj K, Denkenberger D, Velraj R (2018) Heat carrier nanofluids in solar still–a review. Desalin Water Treatm 130:1–16

    Article  CAS  Google Scholar 

  • Baghel R, Upadhyaya S, Chaurasia SP, Singh K, Kalla S (2018) Optimization of process variables by the application of response surface methodology for naphthol blue black dye removal in vacuum membrane distillation. J Clean Prod 199:900–915

    Article  CAS  Google Scholar 

  • Barnett-Itzhaki Z, Eaton J, Hen I, Berman T (2019) Heavy metal concentrations in drinking water in a country heavily reliant on desalination. Environ Sci Pollut Res 26(19):19991–19996

    Article  CAS  Google Scholar 

  • Boubakri A, Hafiane A, Bouguecha SAT (2014) Application of response surface methodology for modeling and optimization of membrane distillation desalination process. J Ind Eng Chem 20(5):3163–3169

    Article  CAS  Google Scholar 

  • Bradley N (2007) The response surface methodology. Indiana University South Bend.

  • Cheng D, Gong W, Li N (2016) Response surface modeling and optimization of direct contact membrane distillation for water desalination. Desalination 394:108–122

    Article  CAS  Google Scholar 

  • Cheng G, Wang X, Liu X, He Y, Balakin BV (2019) Enhanced interfacial solar steam generation with composite reduced graphene oxide membrane. Sol Energy 194:415–430

    Article  CAS  Google Scholar 

  • Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, IL (United States)

    Google Scholar 

  • Duong HC, Xia L, Ma Z, Cooper P, Ela W, Nghiem LD (2017) Assessing the performance of solar thermal driven membrane distillation for seawater desalination by computer simulation. J Membr Sci 542:133–142

    Article  CAS  Google Scholar 

  • Dutta A, Das N, Sarkar D, Chakrabarti S (2019) Development and characterization of a continuous solar-collector-reactor for wastewater treatment by photo-Fenton process. Sol Energy 177:364–373

    Article  CAS  Google Scholar 

  • Elango T, Kannan A, Murugavel KK (2015) Performance study on single basin single slope solar still with different water nanofluids. Desalination 360:45–51

    Article  CAS  Google Scholar 

  • Fabian FM (2012) Application of response surface methodology and central composite design for 5P12-RANTES expression in the Pichia pastoris system

  • Fang S, Tu W, Mu L, Sun Z, Hu Q, Yang Y (2019) Saline alkali water desalination project in Southern Xinjiang of China: a review of desalination planning, desalination schemes and economic analysis. Renew Sustain Energy Rev 113:109268

    Article  CAS  Google Scholar 

  • Garcia-Cuerva L, Berglund EZ, Binder AR (2016) Public perceptions of water shortages, conservation behaviors, and support for water reuse in the US. Resour Conserv Recycl 113:106–115

    Article  Google Scholar 

  • Goel N, Taylor RA, Otanicar T (2020) A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors. Renewable Energy 145:903–913

    Article  CAS  Google Scholar 

  • González D, Amigo J, Suárez F (2017) Membrane distillation: Perspectives for sustainable and improved desalination. Renew Sustain Energy Rev 80:238–259

    Article  Google Scholar 

  • Gude VG (2017) Desalination and water reuse to address global water scarcity. Rev Environ Sci Bio/Technol 16(4):591–609

    Article  Google Scholar 

  • Homaeigohar S, Elbahri M (2017) Graphene membranes for water desalination. NPG Asia Mater 9(8):e427

    Article  CAS  Google Scholar 

  • Ishii S, Sugavaneshwar RP, Chen K, Dao TD. Nagao T (2015) Sunlight absorbing titanium nitride nanoparticles. In: 2015 17th International Conference on Transparent Optical Networks (ICTON), IEEE.

  • Ishii S, Sugavaneshwar RP, Nagao T (2016) Titanium nitride nanoparticles as plasmonic solar heat transducers. J Phys Chem C 120(4):2343–2348

    Article  CAS  Google Scholar 

  • Kabeel A, Abdelgaied M, El-Said EM (2017) Study of a solar-driven membrane distillation system: evaporative cooling effect on performance enhancement. Renew Energy 106:192–200

    Article  Google Scholar 

  • Karavas C-S, Arvanitis KG, Papadakis G (2019) Optimal technical and economic configuration of photovoltaic powered reverse osmosis desalination systems operating in autonomous mode. Desalination 466:97–106

    Article  CAS  Google Scholar 

  • Khuri, A. I. (2006). Response surface methodology and related topics, World scientific.

  • Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdisci Rev Comput Stat 2(2):128–149

    Article  Google Scholar 

  • Körbahti BK, Rauf M (2008) Response surface methodology (RSM) analysis of photoinduced decoloration of toludine blue. Chem Eng J 136(1):25–30

    Article  Google Scholar 

  • Li Q, Beier L-J, Tan J, Brown C, Lian B, Zhong W, Wang Y, Ji C, Dai P, Li T (2019a) An integrated, solar-driven membrane distillation system for water purification and energy generation. Appl Energy 237:534–548

    Article  CAS  Google Scholar 

  • Li Q, Beier L-J, Tan J, Brown C, Lian B, Zhong W, Wang Y, Ji C, Dai P, Li T, Le Clech P, Tyagi H, Liu X, Leslie G, Taylor RA (2019b) An integrated, solar-driven membrane distillation system for water purification and energy generation. Appl Energy 237:534–548

    Article  CAS  Google Scholar 

  • Li X, Zhu B, Zhu J (2019c) Graphene oxide based materials for desalination. Carbon 1:1

    Article  Google Scholar 

  • Liu X, Wang X, Huang J, Cheng G, He Y (2018) Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid. Appl Energy 220:302–312

    Article  CAS  Google Scholar 

  • Lu KJ, Cheng ZL, Chang J, Luo L, Chung T-S (2019) Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies. Desalination 458:66–75

    Article  CAS  Google Scholar 

  • Manju S, Sagar N (2017) Renewable energy integrated desalination: a sustainable solution to overcome future fresh-water scarcity in India. Renew Sustain Energy Rev 73:594–609

    Article  Google Scholar 

  • Merabet S, Robert D, Weber J-V, Bouhelassa M, Benkhanouche S (2009) Photocatalytic degradation of indole in UV/TiO 2: optimization and modelling using the response surface methodology (RSM). Environ Chem Lett 7(1):45–49

    Article  CAS  Google Scholar 

  • Miladi R, Frikha N, Kheiri A, Gabsi S (2019) Energetic performance analysis of seawater desalination with a solar membrane distillation. Energy Convers Manage 185:143–154

    Article  Google Scholar 

  • Mohammadi K, McGowan JG (2018) An efficient integrated trigeneration system for the production of dual temperature cooling and fresh water: thermoeconomic analysis and optimization. Appl Therm Eng 145:652–666

    Article  CAS  Google Scholar 

  • Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments. Wiley, New York

    Google Scholar 

  • Nair AT, Makwana AR, Ahammed MM (2014) The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: a review. Water Sci Technol 69(3):464–478

    Article  CAS  Google Scholar 

  • Naseem S, Wu C-M, Chala TF (2019) Photothermal-responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light-driven interfacial water evaporation. Sol Energy 194:391–399

    Article  CAS  Google Scholar 

  • Qu J, Tian M, Han X, Zhang R, Wang Q (2017) Photo-thermal conversion characteristics of MWCNT-H2O nanofluids for direct solar thermal energy absorption applications. Appl Therm Eng 124:486–493

    Article  CAS  Google Scholar 

  • Rasih RA, Sidik NAC, Samion S (2019) Recent progress on concentrating direct absorption solar collector using nanofluids. J Therm Anal Calorimetry 1:1–20

    Google Scholar 

  • Saffarini RB, Summers EK, Arafat HA, J. H. Lienhard V, (2012) Economic evaluation of stand-alone solar powered membrane distillation systems. Desalination 299:55–62

    Article  CAS  Google Scholar 

  • Sahu J, Acharya J, Meikap B (2010) Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology. Biores Technol 101(6):1974–1982

    Article  CAS  Google Scholar 

  • Sajjad A-A, Yunus MYBM, Azoddein AAM, Hassell DG, Dakhil IH, Hasan HA (2019) Electrodialysis desalination for water and wastewater: a review. Chem Eng J 1:122231

    Google Scholar 

  • Senthilkumar T, Chattopadhyay S, Miranda LR (2017) Optimization of activated carbon preparation from pomegranate peel (Punica granatum peel) Using RSM. Chem Eng Commun 204(2):238–248

    Article  CAS  Google Scholar 

  • Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK (2019) Nanoparticles for water desalination in solar heat exchanger. J Therm Anal Calorimetry 1:1–18

    Google Scholar 

  • Sharshir S, Peng G, Wu L, Yang N, Essa F, Elsheikh A, Mohamed SI, Kabeel A (2017) Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Appl Therm Eng 113:684–693

    Article  CAS  Google Scholar 

  • Sheikholeslami Z, Yousefi Kebria D, Qaderi F (2018) Nanoparticle for degradation of BTEX in produced water; an experimental procedure. J Mol Liq 264:476–482

    Article  CAS  Google Scholar 

  • Shen C, Wang M, Zhang C, Dong Y, Ni L, Jiang Y (2019) Experimental investigation on a novel sewage-resource-based system with functions of heat recovery and water purification. Appl Thermal Eng 1:114580

    Google Scholar 

  • Tan YZ, Wang H, Han L, Tanis-Kanbur MB, Pranav MV, Chew JW (2018) Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. J Membr Sci 565:254–265

    Article  CAS  Google Scholar 

  • Thakur, A. K., P. Khandelwal, B. Sharma (2017). Productivity comparison of solar still with nano fluid and phase changing material with same depth of water. International Conference on Nano for Energy and Water, Springer.

  • Tufa RA, Noviello Y, Di Profio G, Macedonio F, Ali A, Drioli E, Fontananova E, Bouzek K, Curcio E (2019) Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination. Appl Energy 253:113551

    Article  CAS  Google Scholar 

  • Ullah R, Khraisheh M, Esteves RJ, McLeskey JT Jr, AlGhouti M, Gad-el-Hak M, Tafreshi HV (2018) Energy efficiency of direct contact membrane distillation. Desalination 433:56–67

    Article  CAS  Google Scholar 

  • Vakili M, Hosseinalipour SM, Delfani S, Khosrojerdi S (2016) Photothermal properties of graphene nanoplatelets nanofluid for low-temperature direct absorption solar collectors. Sol Energy Mater Sol Cells 152:187–191

    Article  CAS  Google Scholar 

  • Verma SK, Singhal P, Chauhan DS (2019) A synergistic evaluation on application of solar-thermal energy in water purification: Current scenario and future prospects. Energy Convers Manage 180:372–390

    Article  Google Scholar 

  • Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012) An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 39(1):293–298

    Article  CAS  Google Scholar 

  • Zaherzadeh A, Karimi-Sabet J, Mousavian SMA, Ghorbanian S (2015) Optimization of flat sheet hydrophobic membranes synthesis via supercritical CO2 induced phase inversion for direct contact membrane distillation by using response surface methodology (RSM). J Supercrit Fluids 103:105–114

    Article  CAS  Google Scholar 

  • Zarasvand Asadi R, Suja F, Ruslan MH, Jalil NAA (2013) The application of a solar still in domestic and industrial wastewater treatment. Sol Energy 93:63–71

    Article  CAS  Google Scholar 

  • Zarzo D, Prats D (2018) Desalination and energy consumption. What can we expect in the near future? Desalination 427:1–9

    Article  CAS  Google Scholar 

  • Zarzoum K, Zhani K, Bacha HB, Koschikowski J (2019a) Experimental parametric study of membrane distillation unit using solar energy. Sol Energy 188:1274–1282

    Article  Google Scholar 

  • Zarzoum K, Zhani K, Ben Bacha H, Koschikowski J (2019b) Experimental parametric study of membrane distillation unit using solar energy. Sol Energy 188:1274–1282

    Article  Google Scholar 

  • Zehtabiyan-Rezaie N, Alvandifar N, Saffaraval F, Makkiabadi M, Rahmati N, Saffar-Avval M (2019) A solar-powered solution for water shortage problem in arid and semi-arid regions in coastal countries. Sustain Energy Technol Assess 35:1–11

    Google Scholar 

  • Zhang Y, Liu L, Li K, Hou D, Wang J (2018) Enhancement of energy utilization using nanofluid in solar powered membrane distillation. Chemosphere 212:554–562

    Article  CAS  Google Scholar 

  • Zhou J, Zhang X, Sun B, Su W (2018) Performance analysis of solar vacuum membrane distillation regeneration. Appl Therm Eng 144:571–582

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Sheikholeslami.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, Z., Ehteshami, M. Investigation of nanoparticle effect on performance of solar membrane distillation. Appl Nanosci 13, 145–154 (2023). https://doi.org/10.1007/s13204-020-01560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01560-2

Keywords

Navigation