Skip to main content
Log in

Nickel and cobalt effect on properties of MWCNT-based anode for Li-ion batteries

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The article considers the effect of multiwalled carbon nanotubes (MWCNTs) modification with nickel and cobalt in different amounts on their electrochemical properties. For this purpose, several composites were synthesized by simple low-temperature method, characterized by XRD and thermal analysis and investigated as anodes for lithium-ion batteries. The composites with 40% of nickel and 40% of cobalt display a stable capacity of 550 mAh/g and 700 mAh/g, respectively, at a current density of 200 mA/g for the 60 cycles. The exhibited capacity is higher than the theoretical capacity of carbon. A comparison of nickel and cobalt composites shows that Co/CNT composite has better electrochemical characteristics: higher capacity, more flat discharge curve and resistant to texture changes structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Casas C, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sour 208:74–85

    Article  Google Scholar 

  • Cuia X, Wanga Y, Chenb Z et al (2015) Preparation of pompon-like MnO/carbon nanotube composite microspheres as anodes for lithium ion batteries. Electrochim Acta 180:858–865

    Article  Google Scholar 

  • Diao G, Li H, Liang H et al (2018) CVD synthesis of multi-walled carbon nanotubes onto different catalysts at low temperature. NANO 13(4):1850036

    Article  CAS  Google Scholar 

  • Elizabetha I, Naird AK, Singhb BP et al (2017) Multifunctional Ni–NiO–CNT composite as high performing free standing anode for li ion batteries and advanced electro catalyst for oxygen evolution reaction. Electrochim Acta 230:98–105

    Article  Google Scholar 

  • Goriparti S, Miele E, Angeliset FD et al (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sour 257:421–443

    Article  CAS  Google Scholar 

  • Huang J, Zhu N, Yang T et al (2015) Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens Bioelectron 72:332–339

    Article  CAS  Google Scholar 

  • Jafari SM, Khosravi M, Mollazadeh M (2016) Nanoporous hard carbon microspheres as anode active material of lithium ion battery. Electrochim Acta 203:9–20

    Article  CAS  Google Scholar 

  • Kamali AR, Fray DJ (2011) Tin-based materials as advanced anode materials for lithium ion batteries: a review. Rev Adv Mater Sci 27:14–24

    CAS  Google Scholar 

  • Kawasaki S, Hara T, Iwai Y et al (2008) Metallic and semiconducting single-walled carbon nanotubes as the anode material of Li ion secondary battery. Mater Lett 62:2917–2920

    Article  CAS  Google Scholar 

  • Klink S, Ventosa E, Xia W et al (2012) Tailoring of CNT surface oxygen groups by gas-phase oxidation and its implications for lithium ion batteries. Electrochem Commun 15:10–13

    Article  CAS  Google Scholar 

  • Lee J, Zhang R, Liu Z (2000) Dispersion of Sn and SnO on carbon anodes. J Power Sour 90:70–75

    Article  CAS  Google Scholar 

  • Noel M, Suryanarayanan V (2002) Role of carbon host lattices in Li-ion intercalation/de-intercalation processes. J Power Sour 111:193–209

    Article  CAS  Google Scholar 

  • Sehrawat P, Julien C, Islam SS (2016) Carbon nanotubes in Li-ion batteries: a review. Mat Sci Eng 213:12–40

    Article  CAS  Google Scholar 

  • Shen Y, Wang X, Hu H et al (2016) A reversible conversion and intercalation reaction material for Li ion battery cathode. Mater Lett 180:260–263

    Article  CAS  Google Scholar 

  • Shi L, Wang Q, Li H et al (2001) Electrochemical performance of Ni-deposited graphite anodes for lithium secondary batteries. J Power Sour 102:60–67

    Article  CAS  Google Scholar 

  • Shi Y, Pan X, Li B et al (2018) Co3O4 and its composites for high-performance Li-ion batteries: review. Chem Eng J 343:427–446

    Article  CAS  Google Scholar 

  • Shouman MA, Fathy NA (2018) Microporous nanohybrids of carbon xerogels and multi-walled carbon nanotubes for removal of rhodamine B dye. J Water Process Eng 23:165–173

    Article  Google Scholar 

  • Takamura T, Sumiya K, Suzuki J et al (1999) Enhancement of Li doping/undoping reaction rate of carbonaceous materials by coating with an evaporated metal film. J Power Sour 81(82):368–372

    Article  Google Scholar 

  • Thirumal V, Pandurangan A, Jayavel R et al (2016) Synthesis of nitrogen doped coiled double walled carbon nanotubes by chemical vapor deposition method for supercapacitor applications. Curr Appl Phys 16:816–825

    Article  Google Scholar 

  • Wang Q, Li H, Chen L et al (2002) Novel spherical microporous carbon as anode material for Li-ion batteries. Sol State Ion 153:43–50

    Article  Google Scholar 

  • Wang X, Wang J, Su L (2009) Preparation and electrochemical performance of ultra-short carbon nanotubes. J Power Sour 18:194–200

    Article  Google Scholar 

  • Wang J, Wu H, Cui Y et al (2018) A new class of ternary compound for lithium-ion battery: from composite to solid solution. ACS Appl Mater Interface 10:5125–5132

    Article  CAS  Google Scholar 

  • Wu YP, Wan C, Jiang C et al (1999) Mechanism of lithium storage in low temperature carbon. Carbon 37:1901–1908

    Article  CAS  Google Scholar 

  • Wu YP, Rahm E, Huolze R (2003) Carbon anode materials for lithium ion batteries. J Power Sour 114:228–236

    Article  CAS  Google Scholar 

  • Xiong Z, Yun YS, Jin H-J (2013) Applications of carbon nanotubes for lithium ion battery anodes. Materials 6:1138–1158

    Article  CAS  Google Scholar 

  • Xua Z-L, Kimb J-K, Kanga K (2018) Carbon nanomaterials for advanced lithium sulfur batteries: review. Nano Today 19:84–107

    Article  Google Scholar 

  • Yang S, Song H, Chen X (2006) Electrochemical performance expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochem Commun 8:137–142

    Article  CAS  Google Scholar 

  • Yanga Z, Lib Z, Wuc H et al (2003) Effects of doped copper on electrochemical performance of the raw carbon nanotubes anode. Mater Lett 57:3160–3166

    Article  Google Scholar 

  • Zhang Y, Chen T, Wang J (2012) The study of multi-walled carbon nanotubes with different diameter as anodes for lithium-ion batteries. Appl Surf Sci 258:4729–4732

    Article  CAS  Google Scholar 

  • Zhang Q, Wang J, Yu P et al (2018) Porous carbon electrocatalyst with exclusive metal-coordinate active sites for acidic oxygen reduction reaction. Carbon 132:85–94

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support provided by the Science and Technology platform project (China–Ukraine, 2014C050012001), Natural Science Foundation of Guangdong (2014A030310130 and 2014A030313642), Natural Science Foundation of Huizhou University (no. 2015JB004 156020026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iryna Ivanenko.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, G., Li, H., Ivanenko, I. et al. Nickel and cobalt effect on properties of MWCNT-based anode for Li-ion batteries. Appl Nanosci 10, 4839–4845 (2020). https://doi.org/10.1007/s13204-020-01310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01310-4

Keywords

Navigation