Skip to main content
Log in

Bacteriorhodopsin-sensitized preferentially oriented one-dimensional TiO2 nanorod polymorphs as efficient photoanodes for high-performance bio-sensitized solar cells

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Different length of preferentially oriented anatase and rutile TiO2 nanorods (NR) were grown via simple one-step hydrothermal technique and used as photoanodes for bio-sensitized solar cell (BSSCs) fabrication. The dependency of bio-sensitization and photoconversion process with phase, electrolyte and aspect ratio of one-dimensional TiO2 NR was evaluated. Photovoltaic and charge transport properties of (R/A-TiO2NR: LE/QSE:Pt) BSSCs with liquid (LE) and quasi-state electrolyte (QSE) were examined through current–voltage curves and impedance analysis. Interestingly, anatase TiO2 NR photoanodes show higher bio-sensitization (45.40 µmol cm−2, 101.83 µmol cm−2), superior photoconversion (0.72%, 0.84%) and reduced charge transfer resistance (539.70 Ω cm2, 168.20 Ω cm2) than rutile TiO2 NR photoanodes. More importantly, the photocurrent density of anatase TiO2 NR photoanodes gradually increased with length of the NRs and reaches maximum (LE → Jsc = 1.21 mA cm−2, QSE → Jsc = 1.39 mA cm−2) at a longer length (A4 6.79 µm) NRs which is ~ 17% higher than rutile TiO2 NRs photoanodes. (A-TiO2NR: QSE:Pt) BSSCs assembly notably reinforces the photovoltaic performance due to the combined effect of one-dimensional nanostructured TiO2 photoanodes (channelized electron transport, light scattering ability), bacteriorhodopsin (light harvesting, vectorial proton pumping), boosted bio-absorption (BR sensitization) and charge collection of the BSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdou EM, Hafez HS, Bakir E, Abdel-Mottaleb MSA (2013) Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes. Spectrochim Acta Part A Mol Biomol Spectrosc 115:202–207. https://doi.org/10.1016/j.saa.2013.05.090

    Article  Google Scholar 

  • Al-Attafi K, Nattestad A, Wu Q, Ide Y, Yamauchi Y, Dou SX, Kim JH (2018) The effect of amorphous TiO2 in P25 on dye-sensitized solar cell performance. Chem Commun 54:381–384. https://doi.org/10.1039/c7cc07559f

    Article  Google Scholar 

  • Ayalew WA, Ayele DW (2016) Dye-sensitized solar cells using natural dye as light-harvesting materials extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf. J Sci 1:488–494. https://doi.org/10.1016/j.jsamd.2016.10.003

    Google Scholar 

  • Baik JM, Kim MH, Larson C, Chen X, Guo S, Wodtke AM, Moskovits M (2008) High-yield TiO2 nanowire synthesis and single nanowire field-effect transistor fabrication. Appl Phys Lett 92:242111

    Article  Google Scholar 

  • Chang C-W, Chang C-H, Lu H-P, Wu T-K, Diau EW-G (2009) Fabrication and photovoltaic characterization of bio-sensitized solar cells using myoglobin-based sensitizers. J Nanosci Nanotechnol 9:1688–1695. https://doi.org/10.1166/jnn.2009.SI05

    Article  Google Scholar 

  • Deepankumar K et al (2017) Next generation designed protein as a photosensitizer for biophotovoltaics prepared by expanding the genetic code. ACS Sustain Chem Eng 5:72–77. https://doi.org/10.1021/acssuschemeng.6b01975

    Article  Google Scholar 

  • EL-Mekkawi D, Galal H, Wahab RAE, Mohamed W (2016) Photocatalytic activity evaluation of TiO2 nanoparticles based on COD analyses for water treatment applications: a standardization attempt. Int J Environ Sci Technol 13:1077–1088

    Article  Google Scholar 

  • Elzarka A, Liu N, Hwang I, Kamal M, Schmuki P (2017) Large-diameter TiO2 nanotubes enable wall engineering with conformal hierarchical decoration and blocking layers for enhanced efficiency in dye-sensitized solar cells (DSSC). Chem Eur J 23:12995–12999 doi. https://doi.org/10.1002/chem.201702434

    Article  Google Scholar 

  • Fan Y-H, Ho C-Y, Chang Y-J (2017) Enhancement of dye-sensitized solar cells efficiency using mixed-phase TiO2 nanoparticles as photoanode. Scanning 2017:7. https://doi.org/10.1155/2017/9152973

    Google Scholar 

  • Feng X, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA (2008) Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett 8:3781–3786. https://doi.org/10.1021/nl802096a

    Article  Google Scholar 

  • Feng X, Shankar K, Paulose M, Grimes CA (2009) Tantalum-doped titanium dioxide nanowire arrays for dye-sensitized solar cells with high open-circuit. Volt Angew Chem 121:8239–8242. https://doi.org/10.1002/ange.200903114

    Article  Google Scholar 

  • Guo K et al (2013) Preparation and enhanced properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanoparticles in nanocomposite photoanode. J Power Sources 230:155–160

    Article  Google Scholar 

  • Hug H, Bader M, Mair P, Glatzel T (2014) Biophotovoltaics: natural pigments in dye-sensitized solar cells. Appl Energy 115:216–225. https://doi.org/10.1016/j.apenergy.2013.10.055

    Article  Google Scholar 

  • Hwang D-K, Nam JE, Jo HJ, Sung S-J (2017) Quasi-solid state electrolyte for semi-transparent bifacial dye-sensitized solar cell with over 10% power conversion efficiency. J Power Sources 361:87–95

    Article  Google Scholar 

  • Janfaza S, Molaeirad A, Mohamadpour R, Khayati M, Mehrvand J (2014) Efficient bio-nano hybrid solar cells via purple membrane as sensitizer. BioNanoScience 4:71–77

    Article  Google Scholar 

  • Jeganathan C, Pavithra N, Sabari Girisun TC, Anandan S, Ashokkumar M (2016) Enhanced photocurrent generation in bacteriorhodopsin based bio-sensitized solar cells using gel electrolyte. J Photochem Photobiol B 162:208–212. https://doi.org/10.1016/j.jphotobiol.2016.06.044

    Article  Google Scholar 

  • Jithin M et al (2017) Growth, mechanism and properties of TiO2 nanorods embedded nanopillar: evidence of lattice orientation effect. Superlattices Microstruct 109:145–153

    Article  Google Scholar 

  • Kühlbrandt W (2000) Bacteriorhodopsin—the movie. Nature 406:569. https://doi.org/10.1038/35020654

    Article  Google Scholar 

  • Kwon SJ, Im HB, Nam JE, Kang JK, Hwang TS, Yi KB (2014) Hydrothermal synthesis of rutile–anatase TiO2 nanobranched arrays for efficient dye-sensitized solar cells. Appl Surf Sci 320:487–493. https://doi.org/10.1016/j.apsusc.2014.09.110

    Article  Google Scholar 

  • Lanyi JK (2004) Bacteriorhodopsin. Ann Rev Physiol 66:665–688. https://doi.org/10.1146/annurev.physiol.66.032102.150049

    Article  Google Scholar 

  • Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometricTiO2 anatase surfaces Phys Rev B. https://doi.org/10.1103/PhysRevB.63.155409

    Google Scholar 

  • Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990

    Article  Google Scholar 

  • Liu G, Yang HG, Sun C, Cheng L, Wang L, Lu GQM, Cheng H-M (2009) Titania polymorphs derived from crystalline titanium diboride. CrystEngComm 11:2677–2682

    Article  Google Scholar 

  • Liu Y, Tang A, Zhang Q, Yin Y (2015) Seed-mediated growth of anatase TiO2 Nanocrystals with core–antenna structures for enhanced photocatalytic activity. J Am Chem Soc 137:11327–11339. https://doi.org/10.1021/jacs.5b04676

    Article  Google Scholar 

  • Macak JM, Gong BG, Hueppe M, Schmuki P (2007) Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv Mater 19:3027–3031

    Article  Google Scholar 

  • Martsinovich N, Troisi A (2011) Theoretical studies of dye-sensitised solar cells: from electronic structure to elementary processes. Energy Environ Sci 4:4473–4495. https://doi.org/10.1039/c1ee01906f

    Article  Google Scholar 

  • Mathew S et al (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242

    Article  Google Scholar 

  • Meng L, Ren T, Li C (2010) The control of the diameter of the nanorods prepared by dc reactive magnetron sputtering and the applications for DSSC. Appl Surf Sci 256:3676–3682. https://doi.org/10.1016/j.apsusc.2009.12.169

    Article  Google Scholar 

  • Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y (2002) Electrochemically induced sol–gel preparation of single-crystalline TiO2 nanowires. Nano Lett 2:717–720

    Article  Google Scholar 

  • Mohammadpour R, Janfaza S (2015) Efficient nanostructured biophotovoltaic cell based on bacteriorhodopsin as biophotosensitizer. ACS Sustain Chem Eng 3:809–813. https://doi.org/10.1021/sc500617w

    Article  Google Scholar 

  • Mohammadpour R, Janfaza S, Zeinoddini M (2016) Potential of light-harvesting of bacteriorhodopsin co-sensitized with green fluorescence protein: a new insight into bioenergy application. Biomass Bioenerg 87:35–38. https://doi.org/10.1016/j.biombioe.2015.10.017

    Article  Google Scholar 

  • Mor GK, Varghese OK, Paulose M, Grimes CA (2005) Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Adv Func Mater 15:1291–1296 doi. https://doi.org/10.1002/adfm.200500096

    Article  Google Scholar 

  • Nakade S et al (2002) Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. J Phys Chem B 106:10004–10010. https://doi.org/10.1021/jp020051d

    Article  Google Scholar 

  • O’Rourke C, Bowler DR (2014) DSSC anchoring groups: a surface dependent decision. J Phys Condens Matter 26:195302

    Article  Google Scholar 

  • Pal M, Garcia Serrano J, Santiago P, Pal U (2007) Size-controlled synthesis of spherical TiO2 nanoparticles: morphology, crystallization, and phase transition The. J Phys Chem C 111:96–102

    Article  Google Scholar 

  • Park N-G, Van de Lagemaat J, Frank A (2000) Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells The. Journal of Physical Chemistry B 104:8989–8994

    Article  Google Scholar 

  • Pavithra N, Asiri AM, Anandan S (2015) Fabrication of dye sensitized solar cell using gel polymer electrolytes consisting poly (ethylene oxide)-acetamide composite. J Power Sources 286:346–353

    Article  Google Scholar 

  • Pfeifer V et al (2013) Energy band alignment between anatase and rutile TiO2. J Phys Chem Lett 4:4182–4187

    Article  Google Scholar 

  • Qin D-D et al (2015) Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes. Chem Mater 27:4180–4183. https://doi.org/10.1021/acs.chemmater.5b00782

    Article  Google Scholar 

  • Qu J, Lai C (2013) One-dimensional TiO2 nanostructures as photoanodes for dye-sensitized solar cells. J Nanomater 2013:2

    Google Scholar 

  • Roy P, Kim D, Lee K, Spiecker E, Schmuki P (2010) TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2:45–59. https://doi.org/10.1039/b9nr00131j

    Article  Google Scholar 

  • Rui Y, Li Y, Wang H, Zhang Q (2012) Photoanode based on chain-shaped anatase TiO2 nanorods for high-efficiency dye-sensitized solar cells. Chem Asian J 7:2313–2320

    Article  Google Scholar 

  • Sabari Girisun TC, Jeganathan C, Pavithra N, Anandan S (2018) Tunable photovoltaic performance of preferentially oriented rutile TiO2 nanorod photoanode based dye sensitized solar cells with quasi-state electrolyte. Nanotechnology 29:085605. https://doi.org/10.1088/1361-6528/aaa31d

    Article  Google Scholar 

  • Shao F, Sun J, Gao L, Yang S, Luo J (2011) Growth of various TiO2 nanostructures for dye-sensitized solar cells. J Phys Chem C 115:1819–1823. https://doi.org/10.1021/jp110743m

    Article  Google Scholar 

  • Tang H, Prasad K, Sanjines R, Schmid P, Levy F (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75:2042–2047

    Article  Google Scholar 

  • Thavasi V et al (2009) Study on the feasibility of bacteriorhodopsin as bio-photosensitizer in excitonic solar cell: a first report. J Nanosci Nanotechnol 9:1679–1687. https://doi.org/10.1166/jnn.2009.SI07

    Article  Google Scholar 

  • Wang X, Li Z, Shi J, Yu Y (2014) One-dimensional titanium dioxide nanomaterials: nanowires nanorods nanobelts. Chem Rev 114:9346–9384. https://doi.org/10.1021/cr400633s

    Article  Google Scholar 

  • Wu W-Q, Lei B-X, Rao H-S, Xu Y-F, Wang Y-F, Su C-Y, Kuang D-B (2013) Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci Rep 3:1352

    Article  Google Scholar 

  • Wypych A et al (2014) Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods. J Nanomater 2014:9. https://doi.org/10.1155/2014/124814

    Article  Google Scholar 

  • Xie Y et al (2013) A self-powered UV photodetector based on TiO2 nanorod arrays. Nanoscale Res Lett 8:188

    Article  Google Scholar 

  • Yang M, Ding B, Lee S, Lee J-K (2011) Carrier transport in dye-sensitized solar cells using single crystalline TiO2 nanorods grown by a microwave-assisted hydrothermal reaction. J Phys Chem C 115:14534–14541. https://doi.org/10.1021/jp2025126

    Article  Google Scholar 

  • Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481–3487. https://doi.org/10.1021/jp000499j

    Article  Google Scholar 

  • Zhao J, Yao J, Zhang Y, Guli M, Xiao L (2014) Effect of thermal treatment on TiO2 nanorod electrodes prepared by the solvothermal method for dye-sensitized solar cells: surface reconfiguration and improved electron transport. J Power Sources 255:16–23

    Article  Google Scholar 

  • Zhou Z-j, Fan J-q, Wang X, Zhou W-h, Du Z-l, Wu S-x (2011) Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells. ACS Appl Mater Interfaces 3:4349–4353. https://doi.org/10.1021/am201001t

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Department of Science and Technology, Government of India under the DST-SERB Startup Grant Scheme (Grant no. SB/FTP/PS-038/2014). The author CJ wishes to acknowledge the University Grants Commission Government of India for providing UGC-SAP (RFMS) fellowship to carry out his research work (Grant no. F.4-1/2006(BSR)/7-197/2007). The author SA also wishes to thank Solar Energy Research Initiative (SERI)—Department of Technology (DST), India (DST/TM/SERI/S32) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. C. Sabari Girisun or S. Anandan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2600 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeganathan, C., Sabari Girisun, T.C., Vijaya, S. et al. Bacteriorhodopsin-sensitized preferentially oriented one-dimensional TiO2 nanorod polymorphs as efficient photoanodes for high-performance bio-sensitized solar cells. Appl Nanosci 9, 189–208 (2019). https://doi.org/10.1007/s13204-018-0905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0905-7

Keywords

Navigation