Skip to main content
Log in

Multidimensional dose–response toxicity exploration of silver nanoparticles from Nocardiopsis flavascens RD30

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In recent decades, silver nanoparticles (AgNPs) are progressively being used in various applications, nevertheless, their environment-based toxicity studies remain deficient. Hence this article shows the toxicity analysis of AgNPs synthesized from Nocardiopsis flavascens RD30 on Chloroccocum humicola, Artemia salina and Swiss albino mouse. AgNPs were extracellularly synthesized from N. flavascens RD30 extract with sunlight irradiation and the synthesized AgNPs were roughly spherical in shape, with the size range between 5 and 50 nm. Further, the toxicity study on green algae proves that, at 50 µg AgNPs concentration, there was no effect on C. humicola, however, increasing the concentration lead to the cell aggregation which is proposed as a defense mechanism by the algal populations. Similarly, in the case of A. salina, the mortality increased with the increasing concentration of AgNPs, wherein abnormalities such as the improper development of mandibles and underdeveloped endopod and endite were observed in concentrations 60 and 70 µg/mL. Finally, the oral toxicity of AgNPs was evaluated in the mouse model which is portrayed through serum biochemistry and histopathological observations of vital organs. There was no major effect on the liver function in the treated mice, while the negligible reaction was observed in kidneys and intestine of the mice treated with AgNPs after 10 days of oral exposure. Overall results indicate that the biogenic AgNPs are less/non-hazardous to the phytoplanktons, zooplanktons and higher animals when released at a minimal concentration and it could be possibly used in human and environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Arulvasu C, Jennifer SM, Prabhu D, Chandhirasekar D (2014) Toxicity effect of silver nanoparticles in brine shrimp Artemia. Sci World J. https://doi.org/10.1155/2014/256919

    Google Scholar 

  • Behra R, Sigg L, Clift MJ, Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10(87):20130396

    Article  Google Scholar 

  • Bell NC, Minelli C, Tompkins J, Stevens MM, Shard AG (2012) Emerging techniques for submicrometer particle sizing applied to Stober silica. Langmuir 28(29):10860–10872

    Article  Google Scholar 

  • Bhainsa KC, D’souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47(2):160–164

    Article  Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2):396–409

    Article  Google Scholar 

  • Brun E, Sicard–Roselli C (2014) Could nanoparticle corona characterization help for biological consequence prediction? Cancer Nanotechnol 5(1):7

    Article  Google Scholar 

  • Cheraghi J, Hosseini E, Hoshmandfar R, Sahraei R, Farmany A (2013) In vivo effect of silver nanoparticles on serum ALT, AST and ALP activity in male and female mice. Adv Environ Biol 7(1):116–122

    Google Scholar 

  • Das P, Metcalfe CD, Xenopoulos MA (2014) Interactive effects of silver nanoparticles and phosphorus on phytoplankton growth in natural waters. Environ Sci Technol 48(8):4573–4580

    Article  Google Scholar 

  • Devi TP, Kulanthaivel S, Kamil D, Borah JL, Prabhakaran N, Srinivasa N (2013) Biosynthesis of silver nanoparticles from Trichoderma species. Indian J Exp Biol 51(7):5437

    Google Scholar 

  • Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N, Lead JR, Leppard GG, Wilkinson KJ (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43(19):7277–7284

    Article  Google Scholar 

  • Ellaiah P, Ramana T, Raju KV, Sujatha P, Sankar AU (2004) Investigations on marine actinomycetes from Bay of Bengal near Kakinada coast of Andhra Pradesh. Asian J Microbiol Biotechnol Environ Sci 6:53–56

    Google Scholar 

  • Esumi K, Hosoya T, Suzuki A, Torigoe K (2000) Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly (amidoamine) dendrimers. ‎J Colloid Interface Sci 226(2):346–352

    Article  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–553

    Article  Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of nongraminaceous plant cell walls is rapidly decreased by borate ester crosslinking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121(3):829–838

    Article  Google Scholar 

  • Florence AT (1997) The oral absorption of micro-and nanoparticulates: neither exceptional nor unusual. Pharm Res 14(3):259266

    Article  Google Scholar 

  • Florence AT (2005) Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov Today Technol 2(1):75–81

    Article  Google Scholar 

  • Gole A, Dash C, Soman C, Sainkar SR, Rao M, Sastry M (2001) On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjug Chem 12(5):684–690

    Article  Google Scholar 

  • Gopinath PM, Dhanasekaran D, Ranjani A, Thajuddin N, Akbarsha MA, Velmurugan M, Panneerselvam A (2015) Optimization of sporicidal activity and environmental Bacillus endospores decontamination by biogenic silver nanoparticles. Future Microbiol 10(5):725–741

    Article  Google Scholar 

  • Gopinath PM, Ranjani A, Dhanasekaran D, Thajuddin N, Archunan G, Akbarsha MA, Gulyás B, Padmanabhan P (2016) Multi-functional nano silver: A novel disruptive and theranostic agent for pathogenic organisms in real-time. Scie Rep 6:34058

    Article  Google Scholar 

  • Gou Y, Zhou R, Ye X, Gao S, Li X (2015) Highly efficient in vitro biosynthesis of silver nanoparticles using Lysinibacillus sphaericus MR-1 and their characterization. Sci Technol Adv Mater 16(1):015004

    Article  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerf 74(1):328–335

    Article  Google Scholar 

  • Hoecke KV, Quik JT, Mankiewicz-Boczek J, Schamphelaere KA, Elsaesser A, Meeren PV, Barnes C, McKerr G, Howard CV, Meent DV, Rydzyński K (2009) Fate and effects of CeO nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43(12):4537–4546

    Article  Google Scholar 

  • Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42(12):821–826

    Article  Google Scholar 

  • Jiménez-Lamana J, Laborda F, Bolea E, Abad-Álvaro I, Castillo JR, Bianga J, He M, Bierla K, Mounicou S, Ouerdane L, Gaillet S (2014) An insight into silver nanoparticles bioavailability in rats. Metallomics 6(12): 2242–2249

    Article  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SR, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerf 77(2):257–262

    Article  Google Scholar 

  • Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23(6):1076–1084

    Article  Google Scholar 

  • Kirrolia A, Bishnoi NR, Singh R (2012) Effect of shaking, incubation temperature, salinity and media composition on growth traits of green microalgae Chlorococcum sp. J Algal Biomass Utln 3:46–53

    Google Scholar 

  • Leclerc S, Wilkinson KJ (2013) Bioaccumulation of Nanosilver by Chlamydomonas reinhardtii Nanoparticle or the Free Ion. Environ Sci Technol 48(1):358–364

    Article  Google Scholar 

  • Levy JL, Angel BM, Stauber JL, Poon WL, Simpson SL, Cheng SH, Jolley DF (2008) Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Aquat Toxicol 89(2):82–93

    Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011(270974):1–16

    Google Scholar 

  • Makarem A (1974) Haemoglobins, myoglobins and hepatoglobins. In: Canon DC, Winkelman JW (eds) Clinical chemistry: principles and techniques, 2nd edn. RJ Henry, Harper & Row, Maryland, 1111–1214

    Google Scholar 

  • Manikprabhu D, Cheng J, Chen W, Sunkara AK, Mane SB, Kumar R, Hozzein WN, Duan YQ, Li WJ (2016) Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus. J Photochem Photobiol 158:202–205

    Article  Google Scholar 

  • Mehtala JG, Wei A (2014) Nanometric resolution in the hydrodynamic size analysis of ligand-stabilized gold nanorods. Langmuir 30(46):13737–13743

    Article  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008a) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    Article  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008b) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964

    Article  Google Scholar 

  • Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85

    Article  Google Scholar 

  • Piccapietra F, Allué CG, Sigg L, Behra R (2012) Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46(13):7390–7397

    Article  Google Scholar 

  • Quadros ME, Marr LC (2010) Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manag Assoc 60(7):770–781

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  Google Scholar 

  • Röhder LA, Brandt T, Sigg L, Behra R (2014) Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium (III) on short term effects to the green algae Chlamydomonas reinhardtii. Aquat Toxicol 152:121–130

    Article  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44(8):939–943

    Article  Google Scholar 

  • Soniya P, Kumaresn K, Parthiban D, Arun N, Kumaravel P (2015) Effect of Zinc oxide nanoparticles on Artemia salina. RJPDFT 7(2):103–110

    Google Scholar 

  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109(4):547

    Article  Google Scholar 

  • Taylor NS, Merrifield R, Williams TD, Chipman JK, Lead JR (2016) Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supraenvironmental exposure concentrations. Nanotoxicology 10(1):32–41

    Google Scholar 

  • Vawhal P, Rajavel R, Awari VM (2011) Screening of antineoplastic activity of Oscillatoria annae against diethyl nitrosamine induced cancer in rats. J Pharm Sci Res 3:1354–1359

    Google Scholar 

  • Wang Y, Miao AJ, Luo J, Wei ZB, Zhu JJ, Yang LY (2013) Bioaccumulation of CdTe quantum dots in a freshwater alga Ochromonas danica: a kinetics study. Environ Sci Technol 47(18):10601–10610

    Article  Google Scholar 

  • Wetherell DF (1961) Culture of fresh water algae in enriched natural sea water. Physiol Plant 14(1):1–6

    Article  Google Scholar 

  • Yan X, Rong R, Zhu S, Guo M, Gao S, Wang S, Xu X (2015) Effects of ZnO nanoparticles on dimethoate-induced toxicity in mice. J Agric Food Chem 63(37):8292–8298

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author thank University Grant Commission (UGC), New Delhi, for providing financial support for this study (Ref no. 41-1135/2012 (SR) dated 26.07.2012). The authors have no other related affiliations or financial connection with any other organization or financial conflict with subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharumadurai Dhanasekaran.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjani, A., Gopinath, P., Ananth, S. et al. Multidimensional dose–response toxicity exploration of silver nanoparticles from Nocardiopsis flavascens RD30. Appl Nanosci 8, 699–713 (2018). https://doi.org/10.1007/s13204-018-0824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0824-7

Keywords

Navigation