Skip to main content

Advertisement

Log in

Sliding mode controller based on type-2 fuzzy logic PID for a variable speed wind turbine

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In this paper, an optimal type-2 fuzzy logic proportional integral derivative controller based on sliding mode controller (IT2FL-PID-SMC) is designed for a wind turbine with variable speed. The major aim of this work is to overcome the deficiencies of the classical sliding mode controller. In this study, the sliding mode controller presented is modified; the sliding surface is replaced by the type-2 fuzzy proportional integral derivative controller. The type-2 fuzzy system is used to improve the classical sliding mode control efficiency and the robustness. The proposed (IT2FL-PID-SMC) can be used to reach strong stability as well as increase the variable speed wind turbine performance. The reliability and consistency of the proposed approach is assessed by completing simulations and analyzing comparisons with the classical SMC. The simulation results are clearly indicated the effectiveness and the validity of the proposed method, in terms of precision and time of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\( \omega_{r} \) :

Rotor speed

\( J_{r} \) :

Rotor inertia

\( K_{r} \) :

Rotor friction coefficient

\( \theta_{r} \) :

Rotor side angular deviation

\( T_{ls} \) :

Shaft torque

\( B_{ls} \) :

Shaft stiffness coefficient

\( K_{ls} \) :

Shaft damping coefficient

\( \theta_{ls} \) :

Gearbox side angular deviation

\( T_{hs} \) :

Shaft torque

\( T_{em} \) :

Generator electromagnetic torque

\( J_{g} \) :

Generator inertia

\( \omega_{g} \) :

Generator speed

\( K_{g} \) :

Generator friction coefficient

\( n_{g} \) :

Transmission ratio

\( \theta_{g} \) :

Generator side angular deviation

\( v \) :

Wind speed

\( \rho \) :

The air density

References

  • Azar AT (2012) Overview of type-2 fuzzy logic systems. Int J Fuzzy Syst Appl 2(4):1–28

    Article  Google Scholar 

  • Ben meziane K, Dib F, Boumhidi I (2013) Fuzzy sliding mode controller for power system SMIB. J Theor Appl Inf Technol 54:331–338

    Google Scholar 

  • Boubekeur B, Lupu L, Houria S, Hand S (2007) Multivariable control strategy for variable speed variable pitch wind turbines. Renew Energy 32(8):1273–1287

    Article  Google Scholar 

  • Bououden S, Chadli M, Filali S, El Hajjaji A (2012) Fuzzy model based multivariable predictive control of a variable speed wind turbine: LMI approach. Renew Energy 37(1):434–439

    Article  Google Scholar 

  • Castillo O, Melin P (2014) A review on interval type-2 fuzzy logic applications in intelligent control. Inf Sci 27:615–631

    Article  MathSciNet  Google Scholar 

  • Castillo O, Martinez AI, Martinez AC (2007) Evolutionary computing for topology optimization of type-2 fuzzy systems. Adv Soft Comput 41:63–75

    Article  Google Scholar 

  • El-Nagar AM, El-Bardini M (2014) Practical Implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller. Ain Shams Eng J 5:475–487

    Article  Google Scholar 

  • Fernando V, Paul FP (2007) Variable structure control of a wind energy conversion system based on a brushless doubly fed reluctance generator. IEEE Trans Energy Convers 22:499–506

    Article  Google Scholar 

  • Hamed JA, Jungwon Y (2016) Power capture optimization of variable-speed wind turbines using an output feedback controller. Renew Energy 86:517–525

    Article  Google Scholar 

  • İlyas E (2006) Sliding mode control with PID sliding surface and experimental application to an electromechanical plant. ISA Trans 45(1):109–118

    Article  Google Scholar 

  • Kathryn EJ, Lucy YP, Mark JB, Vishwesh K, Lee J (2004) Fingersh, stability analysis of an adaptive torque controller for variable speed wind turbines. In: 43rd IEEE conference on decision and control, vol 4, pp 4087–4094

  • King P, Mamdani E (1997) The application of fuzzy control to industrial processes. Automatica 13:235–242

    Article  Google Scholar 

  • Lee JF, Kathryn J (2004) Baseline results and future plans for the NREL controls advanced research turbine. In: 23rd ASME wind energy symposium, pp 87–93

  • Liang QL, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  • Mendel JM (2000) Uncertainty, fuzzy logic, and signal processing. Signal Process J 80:913–933

    Article  Google Scholar 

  • Mendel JM, John RI, Liu FL (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  • Miccio M, Cosenza B (2014) Control of a distillation column by type-2 and type-1 fuzzy logic PID controllers. J Process Control 24(5):475–484. https://doi.org/10.1016/j.jprocont.2013.12.007

    Article  Google Scholar 

  • Orlando S, Henrique G, Antonio M, Adriano C (2010) nonlinear control of the doubly-fed induction generator in wind power systems. Renew Energy 35(8):1662–1670

    Article  Google Scholar 

  • Pasand MS, Malik OP (1999) A fuzzy logic based PSS using a standardized rule table. Electric Mach Power Syst 27(3):295–310

    Article  Google Scholar 

  • Sahu RK, Panda S, Pradhan PC (2015) Design and analysis of hybrid firefly algorithm-pattern search based fuzzy PID controller for LFC of multi area power systems. Electr. Power Energy Syst 69:200–212

    Article  Google Scholar 

  • Sid Ahmed EA, Mohamed A (2015) Fuzzy sliding mode control applied to a doubly fed induction generator for wind turbines. Turk J Electric Eng Comput Sci. https://doi.org/10.3906/elk-1404-64

    Article  Google Scholar 

  • Slotine JJ (1984) Sliding controller design for non-linear systems. Int J Control 40:421–434

    Article  Google Scholar 

  • Slotine JJ, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Valenciaga F, Puleston PF, Spurgeon SK (2009) A geometric approach for the design of MIMO sliding controllers. Application to a wind-driven doubly fed induction generator. Int J Robust Nonlinear Control 19(1):22–39

    Article  MathSciNet  Google Scholar 

  • Wu B, Lang Y, Zargari N, Kouro S (2011) Power conversion and control of wind energy systems. Wiley, Hoboken

    Book  Google Scholar 

  • Xinyan Z, Weiqing W, Ye L (2006) Fuzzy control of variable speed wind turbine. In: WCICA 2006. The sixth World congress on intelligent control and automation

  • Yesil E (2014) Interval type-2 fuzzy PID load frequency controller using Big Bang-Big Crunch optimization. Appl Soft Comput 15:100–112

    Article  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 3(1):28–44

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaddouj Ben Meziane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahlou, Z., Ben Meziane, K. & Boumhidi, I. Sliding mode controller based on type-2 fuzzy logic PID for a variable speed wind turbine. Int J Syst Assur Eng Manag 10, 543–551 (2019). https://doi.org/10.1007/s13198-019-00767-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-019-00767-z

Keywords

Navigation