Skip to main content

Advertisement

Log in

Pancreatic Cancer Immuno-oncology in the Era of Precision Medicine

  • Review Article
  • Published:
Indian Journal of Surgical Oncology Aims and scope Submit manuscript

Abstract

Pancreatic malignancies carry a dismal prognosis globally, with pancreatic adenocarcinomas (PDAC) being particularly aggressive and stubborn. Unfortunately, several therapeutic strategies that show promise in other cancers have failed to make sizeable impact on pancreatic tumor outcomes. Responses to immunotherapies are especially rare in pancreatic cancer, and patients are in need of innovative approaches that can result in more durable responses. Current research in preclinical models and humans has suggested this resistance is due to a uniquely inflammatory and dysfunctional tumor microenvironment; these findings lay the groundwork for targeting these barriers and improving outcomes. Clinical analyses have also revealed unprecedented heterogeneity in tumor and stromal biology of PDAC, underscoring the need for more personalized approaches and combinatorial therapies. This review will highlight the current state of translational research focusing on PDAC immunity, summarize ongoing clinical efforts to tackle PDAC vulnerabilities, and underscore some unresolved challenges in implementing therapies more broadly. A better understanding of immune contexture and tumor heterogeneity in this disease will greatly accelerate drug discovery and implementation of precision medicine for PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    PubMed  Google Scholar 

  2. Takiar R, Nadayil D, Nandakumar A (2010) Projections of number of cancer cases in India (2010-2020) by cancer groups. Asian Pac J Cancer Prev 11(4):1045–1049

    PubMed  Google Scholar 

  3. Kieler M, Unseld M, Bianconi D, Prager G (2018) Challenges and perspectives for immunotherapy in adenocarcinoma of the pancreas: the Cancer immunity cycle. Pancreas 47(2):142–157

    PubMed  Google Scholar 

  4. Fan JQ, Wang MF, Chen HL, Shang D, Das JK, Song J (2020) Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Mol Cancer 19(1):32

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Balachandran VP, Beatty GL, Dougan SK (2019) Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology 156(7):2056–2072

    CAS  PubMed  Google Scholar 

  6. Hidalgo M, Cascinu S, Kleeff J, Labianca R, Löhr JM, Neoptolemos J, Real FX, van Laethem JL, Heinemann V (2015) Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology 15(1):8–18

    PubMed  Google Scholar 

  7. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20(10):1218–1249

    CAS  PubMed  Google Scholar 

  8. McBride A, Bonafede M, Cai Q, Princic N, Tran O, Pelletier C, Parisi M, Patel M (2017) Comparison of treatment patterns and economic outcomes among metastatic pancreatic cancer patients initiated on nab-paclitaxel plus gemcitabine versus FOLFIRINOX. Expert Rev Clin Pharmacol 10(10):1153–1160

    CAS  PubMed  Google Scholar 

  9. Wattenberg MM, Asch D, Yu S, O’Dwyer PJ, Domchek SM, Nathanson KL, Rosen MA, Beatty GL, Siegelman ES, Reiss KA (2020) Platinum response characteristics of patients with pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or PALB2 mutation. Br J Cancer 122(3):333–339

    CAS  PubMed  Google Scholar 

  10. Golan T, Hammel P, Reni M, van Cutsem E, Macarulla T, Hall MJ, Park JO, Hochhauser D, Arnold D, Oh DY, Reinacher-Schick A, Tortora G, Algül H, O’Reilly EM, McGuinness D, Cui KY, Schlienger K, Locker GY, Kindler HL (2019) Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med 381(4):317–327

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu ZI, Shia J, Stadler ZK, Varghese AM, Capanu M, Salo-Mullen E, Lowery MA, Diaz LA Jr, Mandelker D, Yu KH, Zervoudakis A, Kelsen DP, Iacobuzio-Donahue CA, Klimstra DS, Saltz LB, Sahin IH, O'Reilly EM (2018) Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin Cancer Res 24(6):1326–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bailey P et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531(7592):47–52

    CAS  PubMed  Google Scholar 

  13. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SGH, Hoadley KA, Rashid NU, Williams LA, Eaton SC, Chung AH, Smyla JK, Anderson JM, Kim HJ, Bentrem DJ, Talamonti MS, Iacobuzio-Donahue CA, Hollingsworth MA, Yeh JJ (2015) Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 47(10):1168–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, Cooc J, Weinkle J, Kim GE, Jakkula L, Feiler HS, Ko AH, Olshen AB, Danenberg KL, Tempero MA, Spellman PT, Hanahan D, Gray JW (2011) Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 17(4):500–503

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhutani MS, Cazacu IM, Roy-Chowdhuri S, Maitra A, Pishvaian MJ (2020) Upfront molecular profiling of pancreatic cancer patients - an idea whose time has come. Pancreatology 20:391–393

    PubMed  Google Scholar 

  16. Rainone M et al (2020) An emerging paradigm for germline testing in pancreatic ductal adenocarcinoma and immediate implications for clinical practice: a review. JAMA Oncol

  17. Aguirre AJ, Nowak JA, Camarda ND, Moffitt RA, Ghazani AA, Hazar-Rethinam M, Raghavan S, Kim J, Brais LK, Ragon D, Welch MW, Reilly E, McCabe D, Marini L, Anderka K, Helvie K, Oliver N, Babic A, da Silva A, Nadres B, van Seventer EE, Shahzade HA, St. Pierre JP, Burke KP, Clancy T, Cleary JM, Doyle LA, Jajoo K, McCleary NJ, Meyerhardt JA, Murphy JE, Ng K, Patel AK, Perez K, Rosenthal MH, Rubinson DA, Ryou M, Shapiro GI, Sicinska E, Silverman SG, Nagy RJ, Lanman RB, Knoerzer D, Welsch DJ, Yurgelun MB, Fuchs CS, Garraway LA, Getz G, Hornick JL, Johnson BE, Kulke MH, Mayer RJ, Miller JW, Shyn PB, Tuveson DA, Wagle N, Yeh JJ, Hahn WC, Corcoran RB, Carter SL, Wolpin BM (2018) Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine. Cancer Discov 8(9):1096–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kamyabi N, Bernard V, Maitra A (2019) Liquid biopsies in pancreatic cancer. Expert Rev Anticancer Ther 19(10):869–878

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cui SJ, Tang TY, Zou XW, Su QM, Feng L, Gong XY (2020) Role of imaging biomarkers for prognostic prediction in patients with pancreatic ductal adenocarcinoma. Clin Radiol 75:478.e1–478.e11

    Google Scholar 

  20. Chandana S, Babiker HM, Mahadevan D (2019) Therapeutic trends in pancreatic ductal adenocarcinoma (PDAC). Expert Opin Investig Drugs 28(2):161–177

    CAS  PubMed  Google Scholar 

  21. Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US, Sherry RM, Topalian SL, Yang JC, Lowy I, Rosenberg SA (2010) Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33(8):828–833

    CAS  PubMed  PubMed Central  Google Scholar 

  22. O'Reilly EM et al (2019) Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol

  23. Aglietta M, Barone C, Sawyer MB, Moore MJ, Miller WH Jr, Bagalà C, Colombi F, Cagnazzo C, Gioeni L, Wang E, Huang B, Fly KD, Leone F (2014) A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol 25(9):1750–1755

    CAS  PubMed  Google Scholar 

  24. Brahmer JR, Tykodi SS, Chow LQM, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Naing A, Infante JR, Papadopoulos KP, Chan IH, Shen C, Ratti NP, Rojo B, Autio KA, Wong DJ, Patel MR, Ott PA, Falchook GS, Pant S, Hung A, Pekarek KL, Wu V, Adamow M, McCauley S, Mumm JB, Wong P, van Vlasselaer P, Leveque J, Tannir NM, Oft M (2018) PEGylated IL-10 (pegilodecakin) induces systemic immune activation, CD8(+) T cell invigoration and polyclonal T cell expansion in cancer patients. Cancer Cell 34(5):775–791 e3

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hecht JR (2020) Randomized phase III study of FOLFOX alone and with pegilodecakin as second-line therapy in patients with metastatic pancreatic cancer (SEQUOIA). Gastrointestinal Cancers Symposium: American Society of Clinical Oncology

  27. Cristescu R et al (2018) Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362(6411):eaar3593

    PubMed  PubMed Central  Google Scholar 

  28. Teng MW et al (2015) Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res 75(11):2139–2145

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bailey P, Chang DK, Forget MA, Lucas FAS, Alvarez HA, Haymaker C, Chattopadhyay C, Kim SH, Ekmekcioglu S, Grimm EA, Biankin AV, Hwu P, Maitra A, Roszik J (2016) Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep 6:35848

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Carstens JL, Correa de Sampaio P, Yang D, Barua S, Wang H, Rao A, Allison JP, LeBleu VS, Kalluri R (2017) Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun 8:15095

    PubMed  PubMed Central  Google Scholar 

  31. Balachandran VP et al (2017) Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551:S12–S16

    Google Scholar 

  32. Balli D, Rech AJ, Stanger BZ, Vonderheide RH (2017) Immune cytolytic activity stratifies molecular subsets of human pancreatic cancer. Clin Cancer Res 23(12):3129–3138

    CAS  PubMed  Google Scholar 

  33. Poschke I, Faryna M, Bergmann F, Flossdorf M, Lauenstein C, Hermes J, Hinz U, Hank T, Ehrenberg R, Volkmar M, Loewer M, Glimm H, Hackert T, Sprick MR, Höfer T, Trumpp A, Halama N, Hassel JC, Strobel O, Büchler M, Sahin U, Offringa R (2016) Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncoimmunology 5(12):e1240859

    PubMed  PubMed Central  Google Scholar 

  34. Furukawa K, Tanemura M, Miyoshi E, Eguchi H, Nagano H, Matsunami K, Nagaoka S, Yamada D, Asaoka T, Noda T, Wada H, Kawamoto K, Goto K, Taniyama K, Mori M, Doki Y (2017) A practical approach to pancreatic cancer immunotherapy using resected tumor lysate vaccines processed to express alpha-gal epitopes. PLoS One 12(10):e0184901

    PubMed  PubMed Central  Google Scholar 

  35. Stromnes IM, Schmitt TM, Hulbert A, Brockenbrough JS, Nguyen HN, Cuevas C, Dotson AM, Tan X, Hotes JL, Greenberg PD, Hingorani SR (2015) T cells engineered against a native antigen can surmount immunologic and physical barriers to treat pancreatic ductal adenocarcinoma. Cancer Cell 28(5):638–652

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, Cogdill AP, Chen TJ, Song D, Scholler J, Kranz DM, Feldman MD, Young R, Keith B, Schreiber H, Clausen H, Johnson LA, June CH (2016) Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44(6):1444–1454

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    PubMed  Google Scholar 

  38. Vonderheide RH (2020) CD40 agonist antibodies in cancer immunotherapy. Annu Rev Med 71:47–58

    CAS  PubMed  Google Scholar 

  39. Daley D, Mani VR, Mohan N, Akkad N, Pandian GSDB, Savadkar S, Lee KB, Torres-Hernandez A, Aykut B, Diskin B, Wang W, Farooq MS, Mahmud AI, Werba G, Morales EJ, Lall S, Wadowski BJ, Rubin AG, Berman ME, Narayanan R, Hundeyin M, Miller G (2017) NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med 214(6):1711–1724

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pandha H, Rigg A, John J, Lemoine N (2007) Loss of expression of antigen-presenting molecules in human pancreatic cancer and pancreatic cancer cell lines. Clin Exp Immunol 148(1):127–135

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu M, O’Connor RS, Trefely S, Graham K, Snyder NW, Beatty GL (2019) Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated ‘don’t-eat-me’ signal. Nat Immunol 20(3):265–275

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ, Weissman IL (2019) CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572(7769):392–396

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gurlevik E et al (2016) Administration of Gemcitabine after Pancreatic Tumor Resection in mice induces an antitumor immune response mediated by natural killer cells. Gastroenterology 151(2):338–350 e7

    PubMed  Google Scholar 

  44. Hundeyin M, Kurz E, Mishra A, Rossi JAK, Liudahl SM, Leis KR, Mehrotra H, Kim M, Torres LE, Ogunsakin A, Link J, Sears RC, Sivagnanam S, Goecks J, Islam KMS, Dolgalev I, Savadkar S, Wang W, Aykut B, Leinwand J, Diskin B, Adam S, Israr M, Gelas M, Lish J, Chin K, Farooq MS, Wadowski B, Wu J, Shah S, Adeegbe DO, Pushalkar S, Vasudevaraja V, Saxena D, Wong KK, Coussens LM, Miller G (2019) Innate alphabeta T cells mediate antitumor immunity by orchestrating immunogenic macrophage programming. Cancer Discov 9(9):1288–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Moral JA, Leung J, Rojas LA, Ruan J, Zhao J, Sethna Z, Ramnarain A, Gasmi B, Gururajan M, Redmond D, Askan G, Bhanot U, Elyada E, Park Y, Tuveson DA, Gönen M, Leach SD, Wolchok JD, DeMatteo RP, Merghoub T, Balachandran VP (2020) ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579(7797):130–135

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang YQ et al (2017) Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut 66(1):124–136

    CAS  PubMed  Google Scholar 

  47. Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D, Hewitt S, Udupi GM, Gallagher WM, Wegner C, West BL, Wang-Gillam A, Goedegebuure P, Linehan DC, DeNardo DG (2013) Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 73(3):1128–1141

    CAS  PubMed  Google Scholar 

  48. Stromnes IM et al (2014) Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut:1–13

  49. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 67:9518–9527

    CAS  PubMed  Google Scholar 

  50. Stromnes IM, Burrack AL, Hulbert A, Bonson P, Black C, Brockenbrough JS, Raynor JF, Spartz EJ, Pierce RH, Greenberg PD, Hingorani SR (2019) Differential effects of depleting versus programming tumor-associated macrophages on engineered T cells in pancreatic ductal adenocarcinoma. Cancer Immunol Res 7(6):977–989

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC, DeNardo DG (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74(18):5057–5069

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, Fields RC, DeNardo DG, Hawkins WG, Goedegebuure P, Linehan DC (2018) Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 67(6):1112–1123

    CAS  PubMed  Google Scholar 

  53. Panni RZ et al (2019) Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci Transl Med 11(499)

  54. Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y, Tahara H, Inoue N, Seya T (2012) Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci U S A 109(6):2066–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  55. O'Hara MH et al (2019) Abstract CT004: a phase Ib study of CD40 agonistic monoclonal antibody APX005M together with gemcitabine (Gem) and nab-paclitaxel (NP) with or without nivolumab (Nivo) in untreated metastatic ductal pancreatic adenocarcinoma (PDAC) patients. Cancer Res 79:CT004–CT004

    Google Scholar 

  56. Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB, Bar-Sagi D (2016) IL35-producing b cells promote the development of pancreatic neoplasia. Cancer Discovery 6:247–255

    CAS  PubMed  Google Scholar 

  57. Daley D, Zambirinis CP, Seifert L, Akkad N, Mohan N, Werba G, Barilla R, Torres-Hernandez A, Hundeyin M, Mani VRK, Avanzi A, Tippens D, Narayanan R, Jang JE, Newman E, Pillarisetty VG, Dustin ML, Bar-Sagi D, Hajdu C, Miller G (2016) Gammadelta T cells support pancreatic oncogenesis by restraining alphabeta T cell activation. Cell 166(6):1485–1499 e15

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang Y, Yan W, Mathew E, Bednar F, Wan S, Collins MA, Evans RA, Welling TH, Vonderheide RH, di Magliano MP (2014) CD4+ T lymphocyte ablation prevents pancreatic carcinogenesis in mice. Cancer Immunol Res 2:423–435

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Murakami S, Shahbazian D, Surana R, Zhang W, Chen H, Graham GT, White SM, Weiner LM, Yi C (2017) Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma. Oncogene 36(9):1232–1244

    CAS  PubMed  Google Scholar 

  60. Liao W, Overman MJ, Boutin AT, Shang X, Zhao D, Dey P, Li J, Wang G, Lan Z, Li J, Tang M, Jiang S, Ma X, Chen P, Katkhuda R, Korphaisarn K, Chakravarti D, Chang A, Spring DJ, Chang Q, Zhang J, Maru DM, Maeda DY, Zebala JA, Kopetz S, Wang YA, DePinho RA (2019) KRAS-IRF2 Axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell 35(4):559–572 e7

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wormann SM et al (2016) Loss of P53 function activates JAK2-STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology 151(1):180–193 e12

    PubMed  Google Scholar 

  62. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, Hock AK, Walton JB, Morton JP, Gronroos E, Mason S, Yang M, McNeish I, Swanton C, Blyth K, Vousden KH (2020) Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses. Cell Rep 30(2):481–496 e6

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E (2014) Perspectives of TGF-beta inhibition in pancreatic and hepatocellular carcinomas. Oncotarget 5(1):78–94

    PubMed  Google Scholar 

  64. Principe DR, DeCant B, Mascarinas E, Wayne EA, Diaz AM, Akagi N, Hwang R, Pasche B, Dawson DW, Fang D, Bentrem DJ, Munshi HG, Jung B, Grippo PJ (2016) TGFbeta signaling in the pancreatic tumor microenvironment promotes fibrosis and immune evasion to facilitate tumorigenesis. Cancer Res 76(9):2525–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Alvarez MA, Freitas JP, Mazher Hussain S, Glazer ES (2019) TGF-beta inhibitors in metastatic pancreatic ductal adenocarcinoma. J Gastrointest Cancer 50(2):207–213

    PubMed  Google Scholar 

  66. Mace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S, Nordquist E, Cruz-Monserrate Z, Yu L, Young G, Zhong X, Zimmers TA, Ostrowski MC, Ludwig T, Bloomston M, Bekaii-Saab T, Lesinski GB (2018) IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 67(2):320–332

    CAS  PubMed  Google Scholar 

  67. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, Boon T, van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274

    CAS  PubMed  Google Scholar 

  68. Jang JE, Hajdu CH, Liot C, Miller G, Dustin ML, Bar-Sagi D (2017) Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep 20(3):558–571

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Meyer MA, Baer JM, Knolhoff BL, Nywening TM, Panni RZ, Su X, Weilbaecher KN, Hawkins WG, Ma C, Fields RC, Linehan DC, Challen GA, Faccio R, Aft RL, DeNardo DG (2018) Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat Commun 9(1):1250

    PubMed  PubMed Central  Google Scholar 

  70. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D (2012) Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21(6):836–847

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chandler C, Liu T, Buckanovich R, Coffman LG (2019) The double edge sword of fibrosis in cancer. Transl Res 209:55–67

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang H, Hegde S, DeNardo DG (2017) Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunol Immunother 66(8):1037–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Provenzano PP, Hingorani SR (2013) Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer. Br J Cancer 108(1):1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Duffy JP, Eibl G, Reber HA, Hines OJ (2003) Influence of hypoxia and neoangiogenesis on the growth of pancreatic cancer. Mol Cancer 2:12

    PubMed  PubMed Central  Google Scholar 

  75. Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA, Knolhoff BL, Hogg GD, Tang JP, Baer JM, Mpoy C, Lee KB, Alexander KA, Rogers BE, Murphy KM, Hawkins WG, Fields RC, DeSelm CJ, Schwarz JK, DeNardo DG (2020) Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 37(3):289–307 e9

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, Nywening TM, Hawkins WG, Shapiro IM, Weaver DT, Pachter JA, Wang-Gillam A, DeNardo DG (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22(8):851–860

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Provenzano PP, Cuevas C, Chang AE, Goel VK, von Hoff DD, Hingorani SR (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3):418–429

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Thomas D, Radhakrishnan P (2019) Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer 18(1):14

    PubMed  PubMed Central  Google Scholar 

  79. Ozdemir BC et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25(6):719–734

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, Westphalen CB, Kitajewski J, Fernandez-Barrena MG, Fernandez-Zapico ME, Iacobuzio-Donahue C, Olive KP, Stanger BZ (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25(6):735–747

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ohlund D et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214(3):579–596

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, Sivajothi S, Armstrong TD, Engle DD, Yu KH, Hao Y, Wolfgang CL, Park Y, Preall J, Jaffee EM, Califano A, Robson P, Tuveson DA (2019) Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 9(8):1102–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Helms E, Onate MK, Sherman MH (2020) Fibroblast heterogeneity in the pancreatic tumor microenvironment. Cancer Discov

  84. Long KB, Gladney WL, Tooker GM, Graham K, Fraietta JA, Beatty GL (2016) IFNgamma and CCL2 cooperate to redirect tumor-infiltrating monocytes to degrade fibrosis and enhance chemotherapy efficacy in pancreatic carcinoma. Cancer Discov 6(4):400–413

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Quaranta V, Rainer C, Nielsen SR, Raymant ML, Ahmed MS, Engle DD, Taylor A, Murray T, Campbell F, Palmer DH, Tuveson DA, Mielgo A, Schmid MC (2018) Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer. Cancer Res 78(15):4253–4269

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu Y, Herndon JM, Sojka DK, Kim KW, Knolhoff BL, Zuo C, Cullinan DR, Luo J, Bearden AR, Lavine KJ, Yokoyama WM, Hawkins WG, Fields RC, Randolph GJ, DeNardo DG (2017) Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47(2):323–338 e6

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nguyen KB, Spranger S (2020) Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling. J Cell Biol 219(1)

  88. Luke JJ, Bao R, Sweis RF, Spranger S, Gajewski TF (2019) WNT/beta-catenin pathway activation correlates with immune exclusion across human cancers. Clin Cancer Res 25(10):3074–3083

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wartenberg M, Cibin S, Zlobec I, Vassella E, Eppenberger-Castori S, Terracciano L, Eichmann MD, Worni M, Gloor B, Perren A, Karamitopoulou E (2018) Integrated genomic and Immunophenotypic classification of pancreatic cancer reveals three distinct subtypes with prognostic/predictive significance. Clin Cancer Res 24(18):4444–4454

    CAS  PubMed  Google Scholar 

  90. Li J, Byrne KT, Yan F, Yamazoe T, Chen Z, Baslan T, Richman LP, Lin JH, Sun YH, Rech AJ, Balli D, Hay CA, Sela Y, Merrell AJ, Liudahl SM, Gordon N, Norgard RJ, Yuan S, Yu S, Chao T, Ye S, Eisinger-Mathason TSK, Faryabi RB, Tobias JW, Lowe SW, Coussens LM, Wherry EJ, Vonderheide RH, Stanger BZ (2018) Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 49(1):178–193 e7

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Markosyan N et al (2019) Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating PTGS2 (COX-2). J Clin Invest 130:3594–3609

    Google Scholar 

  92. Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M, Hajdu CH, Simeone DM, Yanai I (2020) Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol 38(3):333–342

    CAS  PubMed  Google Scholar 

  93. Ligorio M, Sil S, Malagon-Lopez J, Nieman LT, Misale S, di Pilato M, Ebright RY, Karabacak MN, Kulkarni AS, Liu A, Vincent Jordan N, Franses JW, Philipp J, Kreuzer J, Desai N, Arora KS, Rajurkar M, Horwitz E, Neyaz A, Tai E, Magnus NKC, Vo KD, Yashaswini CN, Marangoni F, Boukhali M, Fatherree JP, Damon LJ, Xega K, Desai R, Choz M, Bersani F, Langenbucher A, Thapar V, Morris R, Wellner UF, Schilling O, Lawrence MS, Liss AS, Rivera MN, Deshpande V, Benes CH, Maheswaran S, Haber DA, Fernandez-del-Castillo C, Ferrone CR, Haas W, Aryee MJ, Ting DT (2019) Stromal microenvironment shapes the Intratumoral architecture of pancreatic Cancer. Cell 178(1):160–175 e27

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Niknafs N, Zhong Y, Moral JA, Zhang L, Shao MX, Lo A, Makohon-Moore A, Iacobuzio-Donahue CA, Karchin R (2019) Characterization of genetic subclonal evolution in pancreatic cancer mouse models. Nat Commun 10(1):5435

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chan-Seng-Yue M, Kim JC, Wilson GW, Ng K, Figueroa EF, O’Kane GM, Connor AA, Denroche RE, Grant RC, McLeod J, Wilson JM, Jang GH, Zhang A, Dodd A, Liang SB, Borgida A, Chadwick D, Kalimuthu S, Lungu I, Bartlett JMS, Krzyzanowski PM, Sandhu V, Tiriac H, Froeling FEM, Karasinska JM, Topham JT, Renouf DJ, Schaeffer DF, Jones SJM, Marra MA, Laskin J, Chetty R, Stein LD, Zogopoulos G, Haibe-Kains B, Campbell PJ, Tuveson DA, Knox JJ, Fischer SE, Gallinger S, Notta F (2020) Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet 52(2):231–240

    CAS  PubMed  Google Scholar 

  96. Makohon-Moore AP, Zhang M, Reiter JG, Bozic I, Allen B, Kundu D, Chatterjee K, Wong F, Jiao Y, Kohutek ZA, Hong J, Attiyeh M, Javier B, Wood LD, Hruban RH, Nowak MA, Papadopoulos N, Kinzler KW, Vogelstein B, Iacobuzio-Donahue CA (2017) Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet 49(3):358–366

    CAS  PubMed  PubMed Central  Google Scholar 

  97. McDonald OG, Li X, Saunders T, Tryggvadottir R, Mentch SJ, Warmoes MO, Word AE, Carrer A, Salz TH, Natsume S, Stauffer KM, Makohon-Moore A, Zhong Y, Wu H, Wellen KE, Locasale JW, Iacobuzio-Donahue CA, Feinberg AP (2017) Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet 49(3):367–376

    CAS  PubMed  PubMed Central  Google Scholar 

  98. O'Donnell JS, Hoefsmit EP, Smyth MJ, Blank CU, Teng MWL (2019) The promise of neoadjuvant immunotherapy and surgery for cancer treatment. Clin Cancer Res 25(19):5743–5751

    CAS  PubMed  Google Scholar 

  99. Yao W, Maitra A, Ying H (2020) Recent insights into the biology of pancreatic cancer. EBioMedicine 53:102655

    PubMed  PubMed Central  Google Scholar 

  100. Leinwand JC, Miller G (2019) Microbes as biomarkers and targets in pancreatic cancer. Nat Rev Clin Oncol 16(11):665–666

    PubMed  Google Scholar 

  101. Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, Quesada P, Sahin I, Chandra V, San Lucas A, Scheet P, Xu H, Hanash SM, Feng L, Burks JK, Do KA, Peterson CB, Nejman D, Tzeng CWD, Kim MP, Sears CL, Ajami N, Petrosino J, Wood LD, Maitra A, Straussman R, Katz M, White JR, Jenq R, Wargo J, McAllister F (2019) Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178(4):795–806 e12

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Porciuncula A, Hajdu C, David G (2016) The dual role of senescence in pancreatic ductal adenocarcinoma. Adv Cancer Res 131:1–20

    CAS  PubMed  Google Scholar 

  103. Short S, Fielder E, Miwa S, von Zglinicki T (2019) Senolytics and senostatics as adjuvant tumour therapy. EBioMedicine 41:683–692

    PubMed  PubMed Central  Google Scholar 

  104. Pallmann P, Bedding AW, Choodari-Oskooei B, Dimairo M, Flight L, Hampson LV, Holmes J, Mander AP, Odondi L’, Sydes MR, Villar SS, Wason JMS, Weir CJ, Wheeler GM, Yap C, Jaki T (2018) Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Med 16(1):29

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

S.H. would like to thank the DeNardo lab at Washington University for helpful discussions and support. He would also like to acknowledge NCI predoctoral-to-postdoctoral transition fellowship K00CA223043 from NIH.

Funding

NCI K00CA223043 (National Institutes of Health, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samarth Hegde.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, S. Pancreatic Cancer Immuno-oncology in the Era of Precision Medicine. Indian J Surg Oncol 12 (Suppl 1), 118–127 (2021). https://doi.org/10.1007/s13193-020-01192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13193-020-01192-6

Keywords

Navigation