Skip to main content
Log in

Dependence Properties of B-Spline Copulas

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We construct by using B-spline functions a class of copulas that includes the Bernstein copulas arising in Baker’s distributions. The range of correlation of the B-spline copulas is examined, and the Fréchet–Hoeffding upper bound is proved to be attained when the number of B-spline functions goes to infinity. As the B-spline functions are well-known to be an order-complete weak Tchebycheff system from which the property of total positivity of any order follows for the maximum correlation case, the results given here extend classical results for the Bernstein copulas. In addition, we derive in terms of the Stirling numbers of the second kind an explicit formula for the moments of the related B-spline functions on the right half-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, R. (2008). An order-statistics-based method for constructing multivariate distributions with fixed marginals. J. Multivar. Anal. 99, 2312–2327.

    Article  MathSciNet  Google Scholar 

  • Block, H.W. and Sampson, A.R. (2006). Inequalities on distributions: Bivariate and multivariate. In Encyclopedia of Statistical Sciences, Volume 5, 2nd edn. Wiley, Hoboken, Balakrishnan, N. et al. (eds.), p. 3453–3459.

  • Branson, D. (2000). Stirling numbers and Bell numbers: Their role in combinatorics and probability. Math. Scientist 25, 1–31.

    MathSciNet  MATH  Google Scholar 

  • Carlitz, L. (1960). Note on Nörlund’s Polynomial \(B_{n}^{(z)}\). Proc. Am. Math. Soc. 11, 452–455.

    MATH  Google Scholar 

  • de Boor, C. (1972). On calculating with B-splines. J. Approx. Theory 6, 50–62.

    Article  MathSciNet  Google Scholar 

  • de Boor, C. (1976). Total positivity of the spline collocation matrix. Indiana Univ. Math. J. 25, 541–551.

    Article  MathSciNet  Google Scholar 

  • de Boor, C.A. (2001). A Practical Guide to Splines, Revised edn. Springer, New York.

    MATH  Google Scholar 

  • Dou, X., Kuriki, S. and Lin, G.D. (2013). Dependence structures and asymptotic properties of Baker’s distributions with fixed marginals. J. Stat. Plan. Inference 143, 1343–1354.

    Article  MathSciNet  Google Scholar 

  • Dou, X., Kuriki, S., Lin, G.D. and Richards, D. (2014). EM algorithms for estimating the Bernstein copula. Comput. Stat. Data Anal. 93, 228–245.

    Article  MathSciNet  Google Scholar 

  • Gross, K.I. and Richards, D.St.P. (1998). Algebraic methods toward higher order probability inequalities. In Stochastic Processes and Related Topics. Birkhäuser, Boston, Rajput, B. et al. (eds.), p. 189–211.

  • Hardy, G.H., Littlewood, J.E. and Pólya, G. (1929). Some simple inequalities satisfied by convex functions. Messenger Math. 58, 145–152.

    MATH  Google Scholar 

  • Huang, J.S., Dou, X., Kuriki, S. and Lin, G.D. (2013). Dependence structure of bivariate order statistics with applications to Bayramoglu’s distributions. J. Multivar. Anal. 114, 201–208.

    Article  MathSciNet  Google Scholar 

  • Hwang, J.S. and Lin, G.D. (1984). Characterizations of distributions by linear combinations of moments of order statistics. Bull. Instit. Math. Academia Sinica 12, 179–202.

    MathSciNet  MATH  Google Scholar 

  • Karlin, S. (1968). Total Positivity, 1. Stanford University Press, Palo Alto.

    MATH  Google Scholar 

  • Karlin, S. and Studden, W.J. (1966). Tchebycheff Systems: With Applications in Analysis and Statistics. Wiley, New York.

    MATH  Google Scholar 

  • Lin, G.D. and Huang, J.S. (2010). A note on the maximum correlation for Baker’s bivariate distributions with fixed marginals. J. Multivar. Anal. 101, 2227–2233.

    Article  MathSciNet  Google Scholar 

  • Lin, G.D., Dou, X., Kuriki, S. and Huang, J.S. (2014). Recent developments on the construction of bivariate distributions with fixed marginals. J. Statist. Distrib. Appl.1, 14.

    Article  Google Scholar 

  • Lin, G.D., Dou, X. and Kuriki, S. (2018). The bivariate lack-of-memory distributions. To appear in Sankhyā Ser. A. Available at https://doi.org/10.1007/s13171-017-0119-1.

  • Macdonald, I.G. (2015). Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, New York.

    MATH  Google Scholar 

  • Marshall, A.W., Olkin, I. and Arnold, B.C. (2011). Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer, New York.

    Book  Google Scholar 

  • Neuman, E. (1981). Moments and Fourier transforms of B-splines. J. Comput. Appl. Math. 7, 51–62.

    Article  MathSciNet  Google Scholar 

  • Nürnberger, G. (1989). Approximation by Spline Functions. Springer, New York.

    Book  Google Scholar 

  • Pinkus, A. (2010). Totally Positive Matrices. Cambridge University Press, New York.

    MATH  Google Scholar 

  • Schumaker, L.L. (2007). Spline Functions Basic Theory, 3rd edn. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 8, 229–231.

    MathSciNet  MATH  Google Scholar 

  • Shen, X., Zhu, Y. and Song, L. (2008). Linear B-spline copulas with applications to nonparametric estimation of copulas. Comput. Stat. Data Anal. 52, 3806–3819.

    Article  MathSciNet  Google Scholar 

  • Wagner, C.G. (1996). Generalized Stirling and Lah numbers. Discret. Math. 160, 199–218.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the Editor and the referees for their helpful comments that lead to the improvement of the paper. This work was supported by JSPS KAKENHI Grants, Numbers 16K00060 and 16H02792.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Dou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS KAKENHI Grants, Numbers 16K00060 and 16H02792.

Appendix

Appendix

Proof of Theorem 8.

We prove the statement by mathematical induction on d. Note first that (5.7) with d = 0 coincides with the boundary conditions (5.4) for all i and h.

Suppose that (5.7) is true for the case d − 1 and for all i and h, then we wish to prove that it also holds true for the case d and for all i and h.

  1. (i)

    For i ≥ 0, by the assumption of induction,

    $$ \gamma^{d-1}_{i}(h) = \sum\limits_{\ell=0}^{h} i^{\ell} \binom{h}{\ell} \frac{S(h+d-\ell,d)}{\displaystyle\binom{h+d-\ell}{d}}. $$

    Then, we have

    $$ \gamma^{d-1}_{i+1}(h) = \sum\limits_{k=0}^{h} (i+1)^{k} \binom{h}{k} \frac{S(h+d-k,d)}{\displaystyle\binom{h+d-k}{d}}, $$

    and by expanding (i + 1)k using the binomial theorem, we obtain

    $$ \gamma^{d-1}_{i+1}(h) = \sum\limits_{k=0}^{h} \sum\limits_{\ell=0}^{k} i^{\ell} \binom{k}{\ell} \binom{h}{k} \frac{S(h+d-k,d)}{\displaystyle\binom{h+d-k}{d}}. $$

    Interchanging the order of summation and using the identity,

    $$ \binom{k}{\ell} \binom{h}{k} = \binom{h}{\ell} \binom{h-\ell}{k-\ell}, $$

    we find that

    $$ \gamma^{d-1}_{i+1}(h) = \sum\limits_{\ell=0}^{h} i^{\ell} \binom{h}{\ell} \sum\limits_{k=\ell}^{h} \binom{h-\ell}{k-\ell} \frac{S(h+d-k,d)}{\displaystyle\binom{h+d-k}{d}}. $$

    Replacing k by k, we have

    $$ \gamma^{d-1}_{i+1}(h) = \sum\limits_{\ell=0}^{h} i^{\ell} \binom{h}{\ell} \sum\limits_{k=0}^{h-\ell} \binom{h-\ell}{k} \frac{S(h+d-\ell-k,d)}{\displaystyle\binom{h+d-\ell-k}{d}}, $$

    and using the identity,

    $$ \frac{\displaystyle\binom{h-\ell}{k}}{\displaystyle\binom{h+d-\ell-k}{d}} = \frac{\displaystyle\binom{h+d-\ell}{h+d-\ell-k}}{\displaystyle\binom{h+d-\ell}{d}}, $$

    we deduce that

    $$ \begin{array}{@{}rcl@{}} \gamma^{d-1}_{i+1}(h) &=& \sum\limits_{\ell=0}^{h} i^{\ell} \binom{h}{\ell} \frac{1}{\displaystyle\binom{h+d-\ell}{d}} \sum\limits_{k=0}^{h-\ell} \binom{h+d-\ell}{h+d-\ell-k}\\ &&\times S(h+d-\ell-k,d) \\ &= &\sum\limits_{\ell=0}^{h} i^{\ell} \binom{h}{\ell} \frac{S(h+d-\ell+1,d+1)}{\displaystyle\binom{h+d-\ell}{d}}, \end{array} $$
    (6.1)

    where the last equality follows from the identity (5.6). Moreover, using the identity,

    $$ \binom{h+1}{\ell} = \binom{h}{\ell-1} + \binom{h}{\ell}, $$

    we obtain

    $$ \begin{array}{@{}rcl@{}} &&\gamma^{d-1}_{i}(h + 1) - i \gamma^{d-1}_{i}(h) \\ &&\qquad= i^{h+1} + \sum\limits_{\ell=0}^{h} \left[ i^{\ell} \binom{h+1}{\ell} \frac{S(h+d-\ell+1,d)}{\displaystyle\binom{h+d-\ell+1}{d}} \right.\\ && \qquad\qquad\qquad\qquad \left.- i^{\ell+1} \binom{h}{\ell} \frac{S(h+d-\ell,d)}{\displaystyle\binom{h+d-\ell}{d}} \right] \\ &&\qquad= i^{h+1} + \sum\limits_{\ell=0}^{h} \left[ i^{\ell} \left\{ \binom{h}{\ell-1} + \binom{h}{\ell} \right\} \frac{S(h+d-\ell+1,d)}{\displaystyle\binom{h+d-\ell+1}{d}} \right.\\ && \qquad\qquad\qquad\qquad \left.- i^{\ell+1} \binom{h}{\ell} \frac{S(h+d-\ell,d)}{\displaystyle\binom{h+d-\ell}{d}} \right]. \end{array} $$
    (6.2)

    Since S(d, d) = 1 then

    $$ \begin{array}{@{}rcl@{}} i^{h+1} + \sum\limits_{\ell=0}^{h} i^{\ell} \binom{h}{\ell-1}\frac{S(h+d-\ell+1,d)} {\displaystyle\binom{h+d-\ell+1}{d}} &= &\sum\limits_{\ell=1}^{h+1} i^{\ell} \binom{h}{\ell-1}\frac{S(h+d-\ell+1,d)} {\displaystyle\binom{h+d-\ell+1}{d}} \\ &=& \sum\limits_{\ell=0}^{h} i^{\ell} \binom{h}{\ell}\frac{S(h+d-\ell,d)} {\displaystyle\binom{h+d-\ell}{d}}, \end{array} $$

    and substituting this result into (6.2), we obtain

    $$ \gamma^{d-1}_{i}(h+1)-i \gamma^{d-1}_{i}(h) = \sum\limits_{\ell=0}^{h} i^{\ell} \binom{h}{\ell} \frac{S(h+d-\ell+1,d)}{\displaystyle\binom{h+d-\ell+1}{d}}. $$
    (6.3)

    Similarly, it follows from Eq. (6.1) that

    $$ \begin{array}{@{}rcl@{}} &&\gamma^{d-1}_{i+1}(h+1)-i\gamma^{d-1}_{i+1}(h) {\kern12pc}\\ &&\qquad= i^{h+1} + \sum\limits_{\ell=0}^{h} \left[ i^{\ell} \binom{h+1}{\ell} \frac{S(h+d-\ell+2,d+1)}{\displaystyle\binom{h+d-\ell+1}{d}} \right. \\ && \qquad\qquad\qquad\qquad \left.- i^{\ell+1} \binom{h}{\ell} \frac{S(h+d-\ell+1,d+1)}{\displaystyle\binom{h+d-\ell}{d}} \right]{\kern4pc}\\ &&\qquad= \sum\limits_{\ell=0}^{h} i^{\ell} \binom{h}{\ell} \frac{S(h+d-\ell+2,d+1)}{\displaystyle\binom{h+d-\ell+1}{d}}. \end{array} $$
    (6.4)

    Hence, by substituting (6.3) and (6.4) into (5.3), we find that

    $$ \begin{array}{@{}rcl@{}} {\gamma^{d}_{i}}(h) &=& \frac{\gamma^{d-1}_{i}(h+1)-i \gamma^{d-1}_{i}(h)}{d} -\frac{\gamma^{d-1}_{i+1}(h+1)-i\gamma^{d-1}_{i+1}(h)}{d} +\frac{d+1}{d}\gamma^{d-1}_{i+1}(h) \\ &=& \sum\limits_{\ell=0}^{h} i^{\ell} \binom{h}{\ell} \left[ \frac{S(h+d-\ell+1,d)}{d \displaystyle\binom{h+d-\ell+1}{d}} - \frac{S(h+d-\ell+2,d+1)}{d \displaystyle\binom{h+d-\ell+1}{d}} \right.\\ && \qquad\qquad\qquad\qquad\qquad\qquad \left.+ \frac{(d+1)S(h+d-\ell+1,d+1)}{d \displaystyle\binom{h+d-\ell}{d}} \right] \\ &=& \sum\limits_{\ell=0}^{h} i^{\ell} \binom{h}{\ell} \frac{S(h+d-\ell+1,d+1)}{\displaystyle\binom{h+d-\ell+1}{d+1}}, \end{array} $$

    where the last equality follows from the recurrence formula (5.5).

  2. (ii)

    When − d < i < 0, by the assumption of induction,

    $$ \gamma^{d-1}_{i}(h) = \frac{i+d}{d} \cdot \frac{S(h+i+d,i+d)}{\displaystyle\binom{h+d}{d}}. $$

    It then follows from Eq. (5.3) that

    $$ \begin{array}{@{}rcl@{}} {\gamma^{d}_{i}}(h) &=& \frac{\gamma^{d-1}_{i}(h+1)}{i+d} + \frac{(i+d+1)\gamma^{d-1}_{i+1}(h) -\gamma^{d-1}_{i+1}(h+1)}{i+d+1} \\ &=& \frac{1}{i+d} \frac{i+d}{d} \frac{S(h+i+d+1,i+d)}{\displaystyle\binom{h+d+1}{d}} \\ &&\qquad + \frac{i+d+1}{d} \frac{S(h+i+d+1,i+d+1)}{\displaystyle\binom{h+d}{d}} \\ &&\qquad -\frac{1}{i+d+1} \frac{i+d+1}{d} \frac{S(h+i+d+2,i+d+1)}{\displaystyle\binom{h+d+1}{d}} \\ &=& \frac{i+d+1}{d+1} \frac{S(h+i+d+1,i+d+1)}{\displaystyle\binom{h+d+1}{d+1}}. \end{array} $$

    Here we used the recurrence formula (5.5) with n = h + i + d + 1 and k = i + d + 1, viz.,

    $$ \begin{array}{@{}rcl@{}} S(h+i+d+2,i+d+1) &=& (i+d+1)S(h+i+d+1,i+d+1)\\ &&+ S(h+i+d+1,i+d). \end{array} $$
  3. (iii)

    When i = −d, by the inductive hypothesis,

    $$ \gamma^{d-1}_{-d+1}(h) = \frac{h! (d-1)!}{(h+d)!}. $$

    Then, by Eq. (5.3), we have

    $$ \begin{array}{@{}rcl@{}} \gamma^{d}_{-d}(h) &=& \gamma^{d-1}_{-d+1}(h) -\gamma^{d-1}_{-d+1}(h+1) = \frac{h! d!}{(h+d+1)!}, \end{array} $$
    (6.5)

    which coincides with Eq. (5.7) with i = −d.

The proof is completed by induction on d. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, X., Kuriki, S., Lin, G.D. et al. Dependence Properties of B-Spline Copulas. Sankhya A 83, 283–311 (2021). https://doi.org/10.1007/s13171-019-00179-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-019-00179-y

Keywords and phrases

AMS (2000) subject classification

Navigation