Skip to main content
Log in

Nonintegrability of forced nonlinear oscillators

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In recent papers by the authors (Motonaga and Yagasaki, Arch. Ration. Mech. Anal. 247:44 (2023), and Yagasaki, J. Nonlinear Sci. 32:43 (2022)), two different techniques which allow us to prove the real-analytic or complex-meromorphic nonintegrability of forced nonlinear oscillators having the form of time-periodic perturbations of single-degree-of-freedom Hamiltonian systems were provided. Here the concept of nonintegrability in the Bogoyavlenskij sense is adopted and the first integrals and commutative vector fields are also required to depend real-analytically or complex-meromorphically on the small parameter. In this paper we review the theories and continue to demonstrate their usefulness. In particular, we consider the periodically forced damped pendulum, which provides an especially important differential equation not only in dynamical systems and mechanics but also in other fields such as mechanical and electrical engineering and robotics, and prove its nonintegrability in the above meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)

  2. Ayoul, M., Zung, N.T.: Galoisian obstructions to non-Hamiltonian integrability. C. R. Math. Acad. Sci. Paris 348, 1323–1326 (2010)

    Article  MathSciNet  Google Scholar 

  3. Balázs, B., Csendes, T., Garay, B.M., Hatvani, L.: A computer-assisted proof of \(\Sigma _3\)-chaos in the forced damped pendulum equation. SIAM J. Appl. Dyn. Syst. 7, 843–867 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bartuccelli, M., Christiansen, P.L., Muto, V., Soerensen, M.P., Pedersen, N.F.: Chaotic behaviour of a pendulum with variable length. Nuovo Cimento B 100, 229–249 (1987)

    Article  MathSciNet  Google Scholar 

  5. Bogoyavlenskij, O.I.: Extended integrability and bi-hamiltonian systems. Comm. Math. Phys. 196, 19–51 (1998)

    Article  MathSciNet  Google Scholar 

  6. Bountis, T., van der Welle, J.P.: Subharmonic bifurcations and Melnikov’s theory in a system of parametrically driven pendulums. Nonlinear Phenom. Complex Syst. 2, 1–13 (1999)

    MathSciNet  Google Scholar 

  7. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Physicists. Springer, Berlin (1954)

  8. Duffing, G.: Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz und Ihre Technische Bedeutung. Sammlung Vieweg, Braunschweig (1918)

  9. Greenspan, B.D., Holmes, P.J.: Homoclinic orbits, subharmonics and global bifurcations in forced oscillations. In: Barenblatt, G.I., Iooss, G., Joseph, D.D. (eds.) Nonlinear Dynamics and Turbulence. Pitman, Boston, MA (1983)

  10. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

  11. Hockett, K., Holmes, P.J.: Josephson’s junction, annulus maps, Birkhoff attractors, horseshoes and rotation sets. Ergodic Theory Dynam. Syste. 6, 205–239 (1986)

    Article  MathSciNet  Google Scholar 

  12. Hubbard, J.H.: The forced damped pendulum: Chaos, complication and control. Am. Math. Mon. 106, 741–758 (1999)

    Article  MathSciNet  Google Scholar 

  13. Holmes, P.J.: A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. Lond. Ser. A 292, 419–448 (1979)

    Article  MathSciNet  Google Scholar 

  14. Kautz, R.L., Macfarlane, J.C.: Onset of chaos in the rf-biased Josephson junction. Phys. Rev. A 33, 498–509 (1986)

    Article  Google Scholar 

  15. Kozlov, V.V.: Integrability and non-integarbility in Hamiltonian mechanics. Russian Math. Surveys 38, 1–76 (1983)

    Article  Google Scholar 

  16. Kozlov, V.V.: Symmetries. Topology and Resonances in Hamiltonian Mechanics, Springer, Berlin (1996)

  17. Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Moscow Math. Soc. 12, 1–56 (1963)

    MathSciNet  Google Scholar 

  18. Morales-Ruiz, J.J.: Differential Galois Theory and Non-Integrability of Hamiltonian Systems. Birkhäuser, Basel (1999)

  19. Morales-Ruiz, J.J.: A note on a connection between the Poincaré-Arnold-Melnikov integral and the Picard-Vessiot theory. In: Crespo, T., Hajto, Z. (eds.) Differential Galois theory, Banach Center Publ. Vol. 58, Polish Academy of Sciences Institute of Mathematics, pp. 165–175 (2002)

  20. Morales-Ruiz, J.J., Ramis, J.-P.: Galoisian obstructions to integrability of Hamiltonian systems, Methods. Appl. Anal. 8, 33–96 (2001)

    Google Scholar 

  21. Morales-Ruiz, J.J., Ramis, J.-P., Simó, C.: Integrability of Hamiltonian systems and differential Galois groups of higher variational equations. Ann. Sci. École Norm. Suppl. 40, 845–884 (2007)

    Article  MathSciNet  Google Scholar 

  22. Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton (1973)

  23. Motonaga, S., Yagasaki, K.: Persistence of periodic and homoclinic orbits, first integrals and commutative vector fields in dynamical systems. Nonlinearity 34, 7574–7608 (2021)

    Article  MathSciNet  Google Scholar 

  24. Motonaga, S., Yagasaki, K.: Obstructions to integrability of nearly integrable dynamical systems near regular level sets. Arch. Ration. Mech. Anal. 247, 44 (2023)

    Article  MathSciNet  Google Scholar 

  25. Poincaré, H.: New Methods of Celestial Mechanics, Vol. 1, AIP Press, New York, 1992 (original 1892)

    Google Scholar 

  26. Salam, F.M.A., Sastry, S.: Dynamics of the forced Josephson junction circuit: the regions of chaos. IEEE Trans. Circ. Syst. 32, 784–796 (1985)

    Article  MathSciNet  Google Scholar 

  27. Ueda, Y.: Random phenomena resulting from nonlinearity in the system described by Duffing’s equation. Internat. J. Non-Linear Mech. 20 (1985), 481–491 (original 1978)

    Google Scholar 

  28. Whittaker, E.T., Watson, G.N.: A Course in Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927)

  29. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

  30. Yagasaki, K.: The Melnikov theory for subharmonics and their bifurcations in forced oscillations. SIAM J. Appl. Math. 56, 1720–1765 (1996)

    Article  MathSciNet  Google Scholar 

  31. Yagasaki, K.: Melnikov’s method and codimension-two bifurcations in forced oscillations. J. Differ. Equ. 185, 1–24 (2002)

    Article  MathSciNet  Google Scholar 

  32. Yagasaki, K.: Degenerate resonances in forced oscillators. Discrete Contin. Dyn. Syst. B 3 (2003)

  33. Yagasaki, K.: Nonintegrability of the restricted three-body problem, submitted for publication. arXiv:2106.04925 [math.DS]

  34. Yagasaki, K.: Nonintegrability of nearly integrable dynamical systems near resonant periodic orbits. J. Nonlinear Sci. 32, 43 (2022)

    Article  MathSciNet  Google Scholar 

  35. Yagasaki, K.: A new proof of Poincaré result on the restricted three-body problem, submitted for publication. arXiv:2111.11031 [math.DS]

  36. Ziglin, S.L.: Self-intersection of the complex separatrices and the non-existing of the integrals in the Hamiltonian systems with one-and-half degrees of freedom. J. Appl. Math. Mech. 45, 411–413 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Yagasaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the JSPS KAKENHI Grant Numbers JP17H02859 and JP19J22791.

Appendix A: Derivation of (4.9) and (4.10)

Appendix A: Derivation of (4.9) and (4.10)

In this appendix we use the method of residues and compute the integrals (4.7) and (4.8) to obtain (4.9) and (4.10). A similar calculation is found in [34].

We begin with the first term in (4.7). Letting \(s=1/{{\,\textrm{sn}\,}}t\), we have

$$\begin{aligned} \int {{\,\textrm{cn}\,}}^2 t\, {\textrm{d}} t=-\int \frac{1}{s^2} \sqrt{\frac{1-s^2}{k^2-s^2}}{\textrm{d}} s \end{aligned}$$
(A.1)

from the basic properties of the Jacobi elliptic functions

$$\begin{aligned} \frac{{\textrm{d}}}{{\textrm{d}} t} {{\,\textrm{sn}\,}}t={{\,\textrm{cn}\,}}t {{\,\textrm{dn}\,}}t, \quad {{\,\textrm{cn}\,}}^2 t=1-{{\,\textrm{sn}\,}}^2 t, \quad {{\,\textrm{dn}\,}}^2 t=1-k^2{{\,\textrm{sn}\,}}^2 t. \end{aligned}$$

Obviously, the integrand in the right hand side of (A.1) has a pole of order 2 and

$$\begin{aligned} \frac{{\textrm{d}}}{{\textrm{d}} s}\sqrt{\frac{1-s^2}{k^2-s^2}}=0 \end{aligned}$$

at \(s=0\). Noting that \(s=0\) when \(t=iK(k')\), we obtain

$$\begin{aligned} \int _{\bar{\gamma }_\theta }{{\,\textrm{cn}\,}}^2 t\, {\textrm{d}} t =\int _{|s|=\rho } \frac{1}{s^2} \sqrt{\frac{1-s^2}{k^2-s^2}}{\textrm{d}} s=0 \end{aligned}$$
(A.2)

by the method of residues, where \(\bar{\gamma }_\theta =\{t\in \mathbb {C}\mid t+\tfrac{1}{2}\hat{T}^k\in \gamma _\theta \}\) and \(\rho >0\) is sufficiently small.

We turn to the second term in (4.7). Since

$$\begin{aligned} \cos \omega t=\cosh (\omega K(k')) +O(t-iK(k')) \end{aligned}$$
(A.3)

and

$$\begin{aligned} {{\,\textrm{cn}\,}}t=-\frac{i}{k(t-iK(k'))}+O(1) \end{aligned}$$

near \(t=iK(k')\), we have

$$\begin{aligned} \int _{\bar{\gamma }_\theta } {{\,\textrm{cn}\,}}t\cos \omega t\,{\textrm{d}} t=\frac{2\pi }{k} \cosh \omega K(k'). \end{aligned}$$

Similarly, since

$$\begin{aligned} \sin \omega t&=i\sinh (\omega K(k'))+O(t-iK(k')) \end{aligned}$$
(A.4)

near \(t=iK(k')\), we have

$$\begin{aligned} \int _{\bar{\gamma }_\theta } {{\,\textrm{cn}\,}}t\sin \omega t\,{\textrm{d}} t=\frac{2\pi i}{k} \sinh \omega K(k'). \end{aligned}$$

Thus, we obtain (4.9).

We next compute (4.8). We easily see that the first term vanishes by (A.2) since

$$\begin{aligned} {{\,\textrm{dn}\,}}^2 t =k'^2-k^2{{\,\textrm{cn}\,}}^2 t. \end{aligned}$$

On the other hand, since

$$\begin{aligned} {{\,\textrm{dn}\,}}t=-\frac{i}{t-iK(k')}+O(1), \end{aligned}$$

we have

$$\begin{aligned} \int _{\bar{\gamma }_\theta } {{\,\textrm{dn}\,}}\left( \frac{t}{k}\right) \cos \omega t\,{\textrm{d}} t =2\pi k \cosh (\omega kK(k')) \end{aligned}$$

by (A.3), where \(\bar{\gamma }_\theta =\{t\in \mathbb {C}\mid t+\tfrac{1}{2}\tilde{T}^k\in \tilde{\gamma }_\theta \}\). Similarly, by (A.4) we have

$$\begin{aligned} \int _{\bar{\gamma }_\theta } {{\,\textrm{dn}\,}}\left( \frac{t}{k}\right) \sin \omega t\,{\textrm{d}} t =2\pi ik \sinh (\omega kK(k')). \end{aligned}$$

Thus, we obtain (4.10).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motonaga, S., Yagasaki, K. Nonintegrability of forced nonlinear oscillators. Japan J. Indust. Appl. Math. 41, 151–164 (2024). https://doi.org/10.1007/s13160-023-00592-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-023-00592-9

Keywords

Mathematics Subject Classification

Navigation