Skip to main content
Log in

Fully coupled drift-less forward and backward stochastic differential equations in a degenerate case

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Existence and uniqueness results of fully coupled forward stochastic differential equations without drifts and backward stochastic differential equations in a degenerate case are obtained for an arbitrarily large time duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli, F.: Backward–forward stochastic differential equations. Ann. Appl. Probab. 3, 777–793 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Delarue, F.: On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case. Stochastic Processes and their Applications 99, 209–286 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fromm, A.: Theory and applications of decoupling fields for forward-backward stochastic differential equations. PhD thesis, 01 (2015)

  4. Ho, J., Jain, A., Abbeel. P.: Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., (2020)

  5. Hu, Y., Peng, S.: Solution of forward-backward stochastic differential equations. Probab. Theory Relat. Fields 103(2), 273–283 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Elsevier, 2014

  7. Ma, J., Protter, P., Yong, J.: Solving forward-backward stochastic differential equations explicitly ? a four step scheme. Probab. Theory Relat. Fields 98(3), 339–359 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ma, J., Wu, Z., Zhang, D., Zhang, J.: On well-posedness of forward-backward SDEs–a unified approach. The Annals of Applied Probability, 25(4), Aug. (2015)

  9. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pardoux, E., Peng, S.: Backward stochastic differential equations and quasilinear parabolic partial differential equations. In B. L. Rozovskii and R. B. Sowers, editors, Stochastic Partial Differential Equations and Their Applications, pages 200–217, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg

  11. Pardoux, E., Tang, S.: Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114(2), 123–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Peng, S., Wu, Z.: Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control. Optim. 37(3), 825–843 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Skorokhod, A.: Studies in the Theory of Random Processes. Adiwes international series in mathematics. Addison-Wesley Publishing Company, (1965)

  14. Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., Poole, B.: Score-Based Generative Modeling through Stochastic Differential Equations. In International Conference on Learning Representations, (2021)

  15. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin Heidelberg (1997)

    MATH  Google Scholar 

  16. Takahiro, T.: A forward-backward distribution dependent SDE : a drift-less backward case. RIMS Kôkyûroku, (2177):80–86, 04 (2021)

  17. Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. Journal of Mathematics of Kyoto University 11(1), 155–167 (1971)

    MathSciNet  MATH  Google Scholar 

  18. Yong, J.: Finding adapted solutions of forward-backward stochastic differential equations: method of continuation. Probab. Theory Relat. Fields 107(4), 537–572 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper has been nourished by discussions with Mr. Hamaguchi. I would like to express my sincere gratitude to him first. Also, the author thank Dai Taguchi for careful reading of the manuscript and pointed out any mistakes. We had two referees for this paper. The paper has been further refined by their comments, and we believe the quality has improved. I would like to express my sincere gratitude for their kindness in refereeing so much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Tsuchiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, for a given \(\sigma \), and for any \((t, x) \in [0,T] \times {\mathbb {R}}^{l}\), let \(X^{t, x} = \left\{ X^{t, x} (r) \right\} _{r \in [t,T]}\) be a solution to the equation,

$$\begin{aligned} X (r) = x + \int _{t}^{r} \sigma _{*} \left( s, X (s)\right) \textrm{dW}(s), \quad t \le r \le T. \end{aligned}$$
(5)

Lemma 5.1

(Key lemma) Suppose that \(\sigma \) satisfy (A.1). Let \(X^{t, x} = \left\{ X^{t, x} (r) \right\} _{r \in [t,T]}\) be a solution to the equation (5). Then, for all \(0 \le t \le r\) and \(x, h \in {\mathbb {R}}^{l}\),

$$\begin{aligned} {\mathbb {E}} \left[ \left| X^{t, x+ h } (r) - X^{t, x} (r) \right| \right] \le \sqrt{l} \left| h\right| . \end{aligned}$$

Proof

For any fixed \((t, x) \in [0,T] \times {\mathbb {R}}^{l}\), we write for \(j=1, 2, \dots , l\), \(e_{(j)} = (0, \dots , 0, \overbrace{1}^{j}, 0, \dots , 0)\) and we set for any fixed \(\epsilon \in (-1,1) {\setminus } \{0\}\), \(\delta \ge 0\) and \(j=1, 2, \dots , l\),

$$\begin{aligned} M^{\epsilon ^{-1} \delta e_{(j)} } (r) \equiv \epsilon ^{-1} \left( X^{t, x+ \delta e_{(j)} } (r) - X^{t, x} (r) \right) , \quad r \in [t,T]. \end{aligned}$$

Thus, we have

$$\begin{aligned} \begin{aligned}&M^{\epsilon ^{-1} \delta e_{(j)} } (r) = \epsilon ^{-1}\delta e_{(j)} \\ {}&+ \sum _{k=1}^{d}\int _{t}^{r} \varSigma _{k, j}\left( s, X^{t, x+ \delta e_{(j)} } (s), X^{t, x} (s) \right) M^{\epsilon ^{-1} \delta e_{(j)} } \textrm{d}W_{k} (s) \end{aligned} \end{aligned}$$

where \(\varSigma _{k, j}\) is a function such that for \(k=1, \dots , d\) and \(j=1, \dots , l\)

$$\begin{aligned} \varSigma _{k, j} (s, a, b) = \int _{0}^{1} (\nabla _x \sigma _{*})_k \left( s, (1-\theta ) a + \theta b \right) \textrm{d} \theta , \quad (s, a, b) \in [0,T] \times {\mathbb {R}}^{2l}, \end{aligned}$$

where \((\nabla _x \sigma _{*})_k\) stands for the k-component of the space derivative \(\sigma _{*}\). We note that

$$\begin{aligned} \left\{ \left( X^{t, x+ \delta e_{(j)} } (r), X^{t, x} (r), M^{\epsilon ^{-1} \delta e_{(j)} } (r) \right) \right\} _{r \in [t,T]} \end{aligned}$$

is a solution to the SDE with Lipschitz continuous coefficient. In particular, when \(x=\delta =0\) it has the trivial solution, \(0 \in {\mathbb {R}}^{3l}\). It follows from the pathwise uniqueness that the \(l\)-dimensional process \(M^{\epsilon ^{-1} \delta e_{(j)} }\) satisfies

$$\begin{aligned} M^{\epsilon ^{-1} \delta e_{(j)} } = (0, \dots , 0,\epsilon ^{-1} \delta {\mathcal {E}}(X, j), 0, \dots , 0), \end{aligned}$$

where we denote

$$\begin{aligned} {\mathcal {E}}(X, j) = \exp \left[ -\frac{1}{2} \int _{t}^{r} \langle \varSigma _{\cdot , j}(s), \varSigma _{\cdot , j}(s) \rangle _{{\mathbb {R}}^{d}}\textrm{d}s+ \sum _{k=1}^{d}\int _{t}^{r} \varSigma _{k, j}(s) \textrm{d}W_{k} (s)\right] . \end{aligned}$$

In short, we conclude that for any \(x \in {\mathbb {R}}^{l}\) and \(\delta \ge 0\), it holds

$$\begin{aligned} {\mathbb {E}}[| X^{t, x+ \delta e_{(j)} } (r) - X^{t, x} (r) |] = {\mathbb {E}}[| \delta {\mathcal {E}}(X, j) |] = \left| \delta \right| , \quad j=1,2, \dots , l. \end{aligned}$$

Moreover, for any \(h=(h_{1}, h_{2}, \dots , h_{l}) \in {\mathbb {R}}^{l}\), it holds that

$$\begin{aligned} X^{x+h}(r) -X^{x}(r) = (h_{1} {\mathcal {E}}(X, 1), h_{2} {\mathcal {E}}(X, 2), \dots , h_{l} {\mathcal {E}}(X, l)). \end{aligned}$$

It leads that for any \((t, x) \in [0,T] \times {\mathbb {R}}^{l}\), we have

$$\begin{aligned} \begin{aligned}&{\mathbb {E}} \left[ \left| X^{t, x+h}(r) -X^{t,x}(r) \right| \right] = {\mathbb {E}} \left[ \left\{ \sum _{j=1}^{l}|h_{j}|^2 |{\mathcal {E}}(X, j) (r)|^2 \right\} ^{\frac{1}{2}} \right] \\ {}&\le {\mathbb {E}} \left[ \sum _{j=1}^{l} | h_j | | {\mathcal {E}}(X, j)(r)| \right] = \sum _{j=1}^{l} | h_j | {\mathbb {E}} [ |{\mathcal {E}}(X, j)(r)|] =\sum _{j=1}^{l} | h_j |. \end{aligned} \end{aligned}$$

The desired result is followed from the inequality,

$$\begin{aligned} \begin{aligned} \sum _{j=1}^{l} | h_j | \le \sqrt{l} \left( \sum _{j=1}^{l} | h_j |^2 \right) ^{1/2}. \end{aligned} \end{aligned}$$

\(\square \)

Remark 5.2

This estimate holds for the \(L^1\) but not \(L^2\). In fact, we consider an exponential martingale;

$$\begin{aligned} X(r) = x + \int _{t}^{r} L_{\sigma , x}\, X(s)\textrm{dW}(s) = x \exp \left( {L_{\sigma , x}} W(r) -\frac{1}{2}{L_{\sigma , x}^2} r \right) . \end{aligned}$$

Thus we have

$$\begin{aligned} {\mathbb {E}}[|X^{t, x+h}(r) - X^{t, x}(r)|^p] =h^p \exp \left( \frac{1}{2}\left( p^2 - 1\right) {L_{\sigma , x}^2} r \right) , \quad p>0. \end{aligned}$$

From the observation, the above inequality is interesting itself.

Remark 5.3

(Calderón Zygmund lemma) A key of the estimation is that of heat kernel, thus, which can be proven by a fundamental analytical approach known as Calderón Zygmund lemma. Moreover, the transition function of SDE, has a uniformly equicontinuous for the time and space if the coefficients satisfies a bounded condition see the book of [15, Theorem 7.2.4]. For one dimensional unbounded setting, a simple proof also given by [16].

1.1 Dominated property and decoupling FBSDEs

We note a relation between the decoupling expression and the non-linear Feynman-Kac formula. According to the result was given [10], the decoupling FBSDEs;

$$\begin{aligned} \left\{ \begin{array}{l} X(r) = X (t) + \int _{t}^{r} b \left( s, X(s) \right) \textrm{d}s+ \int _{t}^{r} \sigma \left( s, X(s) \right) \textrm{dW}(s) \\ \\ Y(r) = \varphi \left( X(T) \right) + \int _{r}^{T} f \left( s, X(s), Y(s), Z(s) \right) \textrm{d}s - \int _{r}^{T} Z (s) \textrm{dW}(s), \quad r \in [t,T]. \end{array}\right. \end{aligned}$$

gives a expression such that there exists a pair of functions, (uv) satisfies

$$\begin{aligned} Y(s) = u(s, X(s)), \quad Z(s) = \nabla _x u (s, X(s)) \cdot \sigma (s, X(s) ), \quad s \in [0,T]. \end{aligned}$$

Therefore, we obtain

Lemma 5.4

Suppose that (A.1) holds. Then, there exists a series \((u_n, v_n)\) satisfying the equation (3) and it is uniquely determined for all \(n \in {\mathbb {N}}\).

Proof

Firstly, for \((t, x) \in [0,T]\times {\mathbb {R}}^{l}\), we denote \(X_{0}^{t, x} (r) \equiv x\) for all \(t \le r \le T\). Thus, the (A.1) implies that \((Y_0, Z_0) \in {\mathscr {S}}^2 \times {\mathscr {H}}^2\) be a unique solution of BSDE such that

$$\begin{aligned} Y_{0} (r) = \varphi \left( X_{0} (T) \right) + \int _{r}^{T} f \left( s, X_{0}(s), Y_{0}(s), Z_{0}(s) \right) \textrm{d}s- \int _{r}^{T} Z_{0}(s) \textrm{d}s, \quad t \le r \le T. \end{aligned}$$

Moreover, we have for all \((t, x) \in [0,T] \times {\mathbb {R}}^{l}\),

$$\begin{aligned} Y_0 (r) = \varphi ( x ), \quad Z_0 (r)=0, \quad t \le r \le T. \end{aligned}$$

Denoting \( u_{0}(t, x)= \varphi ( x )\) and \(v_{0}(t, x)=0\) for all \((t, x) \in [0,T] \times {\mathbb {R}}^{l}\), it follows from (A.1) again that there exists a unique strong solution to the following SDE,

$$\begin{aligned} X_{1} (r) = x + \int _{t}^{r} \sigma \left( s, X_{1} (s), u_0 (s, X_{1} (s)), v_0 (s, X_{1} (s) ) \right) \textrm{dW}(s), \quad t \le r \le T. \end{aligned}$$

For \(k \in {\mathbb {N}}\), suppose that there exists a series of a pair of smooth functions \((u_{k-1}, v_{k-1})\) such that

$$\begin{aligned} v_{k-1} (t, x) = \left( \nabla _x u_{k-1}\right) (t, x) \cdot \sigma (t, x, u_{k-1}(t, x), v_{k-1}(t, x)), \quad (t, x) \in [0,T]\times {\mathbb {R}}^{l}. \end{aligned}$$

It induces the following decoupling FBSDE’s and it follows from [9] such that the solution \(\varTheta _{k}^{t, x} \) exists uniquely;

$$\begin{aligned} \left\{ \begin{array}{l} X_{k} (r) = x + \int _{t}^{r} \sigma \left( s, X_{k}(s), u_{k-1} (s, X^{t, x}_{k} (s) ), v_{k-1} (s, X^{t, x}_{k} (s) ) \right) \textrm{dW}(s) \\ \\ Y_{k} (r) = \varphi \left( X_{k} (T) \right) + \int _{r}^{T} f \left( s, \varTheta _{k}^{t, x}(s) \right) \textrm{d}s - \int _{r}^{T} Z_{k}(s) \textrm{dW}(s), \end{array}\right. \end{aligned}$$

for any \((t, x) \in [0,T] \times {\mathbb {R}}^{l}\). Thanks to [10], there exists a semi-linear parabolic PDE solution \(u_{k}\) such that it satisfies for all \(t \le r \le T\),

$$\begin{aligned} Y_{k}(r) = u_{k} (r, X_{k} (r) ), \ Z_{k}(r) = \left( \nabla _x u_{k} \right) (r, X_{k} (r) ) \cdot \sigma \left( \nabla _x u_{k} \right) (r, \varTheta _{k}^{t, x}(r) ). \end{aligned}$$

In particular, putting \(v_{k}(t, x) \triangleq Z^{t, x}_{k} (t)\) we have

$$\begin{aligned} v_{k}(t, x) = \left( \nabla _x u_{k} \right) (t, x) \cdot \sigma \left( t, x, u_{k}(t, x), v_{k}(t, x) \right) , \quad (t, x) \in [0,T] \times {\mathbb {R}}^{l}. \end{aligned}$$

The smooth condition of the diffusion coefficient \(\sigma (s, x, u_{k} (s, x), v_{k} (s, x))\) implies that there exists a strong unique solution in \({\mathscr {S}}^2\) such that

$$\begin{aligned} X_{k+1} (r) = x + \int _{t}^{r} \sigma \left( s, X_{k+1} (s), u_{k}(s, X_{k+1} (s) ), v_{k}(s, X_{k+1} (s) ) \right) \textrm{dW}(s). \end{aligned}$$

Therefore, we obtain the desired result. \(\square \)

Remark 5.5

The series of functions \(\{ u_n \}\) and \(\{ v_n \}\) is Lipschitz continuous for all \((t, n) \in [0,T] \times {\mathbb {N}}\):

$$\begin{aligned} \begin{aligned}&\left| u_{n}(t, x+ h) - u_{n}(t, x) \right| \le L_{u_n, x} |h|, \\ {}&\left| v_{n}(t, x+ h) - v_{n}(t, x) \right| \le L_{v_n, x} |h|, \quad (x, h) \in {\mathbb {R}}^{l} \times {\mathbb {R}}^{l}. \end{aligned} \end{aligned}$$

It stands for the construction of the scheme is easy but the problem is to select the convergence sequence if it exists.

The following dominated property is convenient.

Lemma 5.6

(\({\overline{Y}}\) dominated by \({\overline{X}}\)) Suppose that \((X_i, Y_i, Z_i) \in {\mathscr {S}}^2 \times {\mathscr {S}}^2 \times {\mathscr {H}}^2\) satisfies

$$\begin{aligned} \begin{aligned} Y_i (r)=\varphi (X_i (T))&+ \int _{r}^{T} f \left( s, X_i (s), Y_i (s), Z_i (s) \right) \textrm{d}s \\ {}&- \int _{r}^{T} Z_i (s) \textrm{dW}(s), \quad r \in [t,T], \ i=1,2. \end{aligned} \end{aligned}$$

Denote and write

$$\begin{aligned} ({\overline{X}}, {\overline{Y}}, {\overline{Z}}) \triangleq (X_1 - X_2, Y_1 - Y_2, Z_1 - Z_2 ). \end{aligned}$$

For any \(\epsilon \in (0,1)\) we denote \(L = (1+ 2 L_{f, y} +\epsilon ^{-1} ) + (1-\epsilon ) \). Then, it holds that

$$\begin{aligned} \begin{aligned}&{\mathbb {E}} \left[ \left| {\overline{Y}} (t) \right| ^2 e^{-Lt} \right] +(1-\epsilon )\int _t^T {\mathbb {E}} \left[ \left( \left| {\overline{Y}} (s) \right| ^2+ \left| {\overline{Z}} (s) \right| ^2 \right) e^{-Ls}\right] \textrm{d}s \\ {}&\le {\mathbb {E}} \left[ \left| \delta _{X} \varphi (T)\right| ^2 e^{-LT}\right] + \int _{t}^{T} {\mathbb {E}} \left[ \left| \delta _{X} f (s) \right| ^2 e^{-Ls} \right] \textrm{d}s. \end{aligned} \end{aligned}$$

where we define \(\delta _{X} f (s) = f (s, X_1(s), Y_1 (s), Z_1 (s) ) - f (s, X_2 (s), Y_1 (s), Z_1 (s) )\) and \( \delta _{X} \varphi (T)\triangleq \varphi \left( X_1 (T) \right) -\varphi \left( X_2 (T) \right) \).

Proof

Applying the Itô formula to \(\left| {\overline{Y}} (t) \right| ^2 e^{- L t }\) for some \(L>0\), we have

$$\begin{aligned} \begin{aligned}&\left| {\overline{Y}} (t) \right| ^2 e^{-Lt} + L \int _t^T \left| {\overline{Y}} (s) \right| ^2 e^{-Ls} \textrm{d}s + \int _t^T \left| {\overline{Z}} (s) \right| ^2 e^{-Ls} \textrm{d}s \\ {}&= \left| \delta _{X} \varphi (T) \right| ^2 e^{-LT} + 2 \int _{t}^{T} \langle {\overline{Y}}(s), {\overline{f}} (s) \rangle e^{-Ls} \textrm{d}s - 2 \int _{t}^{T} e^{-Ls} \langle {\overline{Y}}(s), {\overline{Z}}(s) \textrm{d}W(s) \rangle . \end{aligned} \end{aligned}$$

where we define \({\overline{f}} (s) = f (s, X_1(s), Y_1(s), Z_1 (s) ) - f (s, X_2 (s), Y_2 (s), Z_2 (s) )\). For arbitrary \(\epsilon >0\), we have \(2 ab \le {\epsilon a}^2 + {\epsilon ^{-1} b^2}\) for all \(a, b \ge 0\) holds, we have

$$\begin{aligned} \begin{aligned}&2\left| \langle {\overline{Y}}(s), {\overline{f}} (s) \rangle \right| \\ {}&\le 2 \left| {\overline{Y}}(s) \right| \left( |\delta _X f (s)| + L_{f, y}|{\overline{Y}}(s)| + L_{f, z} |{\overline{Z}}(s)| \right) \\ {}&\le |\delta _{X} f (s)|^2 + (1+ 2L_{f, y} +\epsilon ^{-1} )|{\overline{Y}}(s)| ^2 + \epsilon L_{f, z}^2 |{\overline{Z}}(s)| ^2. \end{aligned} \end{aligned}$$

Since \({\overline{Y}}, {\overline{Z}}\) is squared integrable, \( \left\{ \int _{r}^{T} \langle {\overline{Y}}(s), {\overline{Z}}(s) \textrm{d}W(s) \rangle \right\} _{r \in [t,T] } \) is martingale vanishing at T. Therefore, we obtain

$$\begin{aligned} \begin{aligned}&{\mathbb {E}} \left[ \left| {\overline{Y}} (t) \right| ^2 e^{-Lt}\right] + L \int _t^T {\mathbb {E}} \left[ \left| {\overline{Y}} (s) \right| ^2 e^{-Ls}\right] \textrm{d}s + \int _t^T {\mathbb {E}} \left[ \left| {\overline{Z}} (s) \right| ^2 e^{-Ls}\right] \textrm{d}s \\ {}&\le {\mathbb {E}} \left[ \left| \delta _{X} \varphi \right| ^2 e^{-LT}\right] \\ {}&+ \int _{t}^{T} {\mathbb {E}} \left[ \left| \delta _{X} f (s) \right| ^2 + (1+ 2 L_{f, y} +\epsilon ^{-1} ) L_{f, y}^2 \left| {\overline{Y}} (s) \right| ^2 + \epsilon L_{f, z}^2 |{\overline{Z}}(s)| ^2 \right] e^{-Ls} \textrm{d}s. \end{aligned} \end{aligned}$$

where we write \( \delta _{X} \varphi (T)\triangleq \varphi \left( X_1 (T) \right) -\varphi \left( X_2 (T) \right) \). Now, putting \(L = (1+ 2 L_{f, y} +\epsilon ^{-1} ) + (1-\epsilon ) \), we obtain

$$\begin{aligned} \begin{aligned}&{\mathbb {E}} \left[ \left| {\overline{Y}} (t) \right| ^2 e^{-Lt} \right] +(1-\epsilon )\int _t^T {\mathbb {E}} \left[ \left( \left| {\overline{Y}} (s) \right| ^2+ \left| {\overline{Z}} (s) \right| ^2 \right) e^{-Ls}\right] \textrm{d}s \\ {}&\le {\mathbb {E}} \left[ \left| \delta _{X} \varphi (T)\right| ^2 e^{-LT}\right] + \int _{t}^{T} {\mathbb {E}} \left[ \left| \delta _{X} f (s) \right| ^2 e^{-Ls} \right] \textrm{d}s. \end{aligned} \end{aligned}$$

\(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchiya, T. Fully coupled drift-less forward and backward stochastic differential equations in a degenerate case. Japan J. Indust. Appl. Math. 40, 1031–1051 (2023). https://doi.org/10.1007/s13160-023-00566-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-023-00566-x

Keywords

Mathematics Subject Classification

Navigation