Skip to main content
Log in

Decreasing minimization on base-polyhedra: relation between discrete and continuous cases

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the relationship between the discrete and the continuous decreasing minimization problem on base-polyhedra. The continuous version (under the name of lexicographically optimal base of a polymatroid) was solved by Fujishige in 1980, with subsequent elaborations described in his book (1991). The discrete counterpart of the dec-min problem (concerning M-convex sets) was settled only recently by the present authors, with a strongly polynomial algorithm to compute not only a single decreasing minimal element but also the matroidal structure of all decreasing minimal elements and the dual object called the canonical partition. The objective of this paper is to offer a complete picture on the relationship between the continuous and discrete dec-min problems on base-polyhedra by establishing novel technical results and integrating known results. In particular, we derive proximity results, asserting the geometric closeness of the decreasingly minimal elements in the continuous and discrete cases, by revealing the relation between the principal partition and the canonical partition. We also describe decomposition-type algorithms for the discrete case following the approach of Fujishige and Groenevelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, B.C., Sarabia, J.M.: Majorization and the Lorenz Order with Applications in Applied Mathematics and Economics. Springer International Publishing, Cham (2018), (1st edn., 1987)

  2. Chakrabarty, D., Jain, P., Kothari, P.: Provable submodular minimization via Fujishige-Wolfe’s algorithm. Adv. Neural Inf. Process. Syst. 27 (NIPS 2014), 802–809 (2014)

  3. De Loera, J.A., Haddock, J., Rademacher, L.: The minimum Euclidean-norm point in a convex polytope: Wolfe’s combinatorial algorithm is exponential. SIAM J. Comput. 49, 138–169 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dutta, B.: The egalitarian solution and reduced game properties in convex games. Internat. J. Game Theory 19, 153–169 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dutta, B., Ray, D.: A concept of egalitarianism under participation constraints. Econometrica 57, 615–635 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach, New York (1970)

    Google Scholar 

  7. Frank, A.: Connections in Combinatorial Optimization. Oxford University Press, Oxford (2011)

    MATH  Google Scholar 

  8. Frank, A., Murota, K.: Discrete decreasing minimization, Part II: views from discrete convex analysis. arXiv: 1808.08477 (August 2018)

  9. Frank, A., Murota, K.: Decreasing minimization on M-convex sets: background and structures. Math. Programm. (2021). https://doi.org/10.1007/s10107-021-01722-2

  10. Frank, A., Murota, K.: Decreasing minimization on M-convex sets: algorithms and applications. Math. Programm. (2021). https://doi.org/10.1007/s10107-021-01711-5. (published online)

    Article  MATH  Google Scholar 

  11. Frank, A., Murota, K.: Fair integral network flows. Math. Oper. Res., to appear; arXiv: 1907.02673v4 (2022)

  12. Frank, A., Murota, K.: Fair integral submodular flows. Disc. Appl. Math., to appear; arXiv: 2012.07325 (2020)

  13. Fujishige, S.: Lexicographically optimal base of a polymatroid with respect to a weight vector. Math. Oper. Res. 5, 186–196 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fujishige, S.: Submodular Functions and Optimization, 1st edn. North-Holland, Amsterdam (1991); 2nd edn. Elsevier, Amsterdam (2005)

  15. Fujishige, S.: Theory of principal partitions revisited. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 127–162. Springer, Berlin (2009)

    Chapter  Google Scholar 

  16. Fujishige, S., Isotani, S.: A submodular function minimization algorithm based on the minimum-norm base. Pacific J Optimiz 7, 3–15 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Goemans, M.X., Gupta, S., Jaillet, P.: Discrete Newton’s algorithm for parametric submodular function minimization. In: Eisenbrand, F., Koenemann, J. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 10328, pp. 212–227 (2017)

  18. Groenevelt, H.: Two algorithms for maximizing a separable concave function over a polymatroid feasible region. Eur. J. Oper. Res. 54, 227–236 (1991). (The technical report version appeared as Working Paper Series No. QM 8532, Graduate School of Management, University of Rochester (1985))

    Article  MATH  Google Scholar 

  19. Harvey, N.J.A., Ladner, R.E., Lovász, L., Tamir, T.: Semi-matchings for bipartite graphs and load balancing. J. Algorithms 59, 53–78 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hochbaum, D.S.: Lower and upper bounds for the allocation problem and other nonlinear optimization problems. Math. Oper. Res. 19, 390–409 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hochbaum, D.S.: Complexity and algorithms for nonlinear optimization problems. Ann. Oper. Res. 153, 257–296 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hochbaum, D.S., Hong, S.-P.: About strongly polynomial time algorithms for quadratic optimization over submodular constraints. Math. Program. 69, 269–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. MIT Press, Boston (1988)

    MATH  Google Scholar 

  24. Iri, M.: A review of recent work in Japan on principal partitions of matroids and their applications. Ann. N. Y. Acad. Sci. 319, 306–319 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Iwata, S., Murota, K., Shigeno, M.: A fast parametric submodular intersection algorithm for strong map sequences. Math. Oper. Res. 22, 803–813 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Katoh, N., Shioura, A., Ibaraki, T.: Resource allocation problems. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, vol. 5, 2nd edn., pp. 2897–2988. Springer, Berlin (2013)

    Chapter  Google Scholar 

  27. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  28. Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Math. Program. 7, 97–107 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moriguchi, S., Shioura, A., Tsuchimura, N.: M-convex function minimization by continuous relaxation approach–Proximity theorem and algorithm. SIAM J. Optim. 21, 633–668 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2003)

  32. Murota, K.: Recent developments in discrete convex analysis. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, Chapter 11, pp. 219–260. Springer, Berlin (2009)

    Chapter  Google Scholar 

  33. Murota, K.: On basic operations related to network induction of discrete convex functions. Optimiz Methods Software 36, 519–559 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Radzik, T.: Fractional combinatorial optimization. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, 2nd edn., pp. 1311–1355. Springer Science+Business Media, New York (2013)

    Chapter  Google Scholar 

  35. Schrijver, A.: Combinatorial Optimization-Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  36. Tamir, A.: A Note on the Polynomial Solvability of the Resource Allocation Problem over Polymatroids. Technical Report, School of Mathematical Sciences, Tel Aviv University (1993)

  37. Végh, L.A.: A strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives. SIAM J. Comput. 45, 1729–1761 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Veinott, A.F., Jr.: Least \(d\)-majorized network flows with inventory and statistical applications. Manage. Sci. 17, 547–567 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wolfe, P.: Finding the nearest point in a polytope. Math. Program. 11, 128–149 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Satoru Iwata and Akiyoshi Shioura for discussion about algorithms, and Arie Tamir for indicating references. We also thank the anonymous referee for helpful comments. Insightful questions posed by Tamás Király led to Theorem 4.2. The research was partially supported by the National Research, Development and Innovation Fund of Hungary (FK_18) – No. NKFI-128673, and by JSPS KAKENHI Grant Number JP20K11697.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Murota.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, A., Murota, K. Decreasing minimization on base-polyhedra: relation between discrete and continuous cases. Japan J. Indust. Appl. Math. 40, 183–221 (2023). https://doi.org/10.1007/s13160-022-00511-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00511-4

Keywords

Mathematics Subject Classification

Navigation