Skip to main content
Log in

Mixed soliton solutions for the ultradiscrete BKP equation and its reduction

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The soliton solution of the ultradiscrete BKP equation is obtained, via ultradiscretization of the generalized discrete BKP equation. It is shown that these solutions consist of three different kinds of soliton solutions for the ultradiscrete BKP equation. We also derive the soliton solution of the B-type box and ball system by taking the reduction of the ultradiscrete BKP equation and clarify the origin of the two types of soliton solutions of the B-type box and ball system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolfram, S. (ed.): Theory and Applications of Cellular Automata. World Scientific, Singapore (1986)

    MATH  Google Scholar 

  2. Takahashi, D., Satsuma, J.: A soliton cellular automaton. J. Phys. Soc. Jpn. 59, 3514–3519 (1990)

    Article  MathSciNet  Google Scholar 

  3. Matsukidaira, J., Satsuma, J., Takahashi, D., Tokihiro, T., Torii, M.: Toda-type cellular automaton and its $N$-soliton solution. Phys. Lett. A 225, 287–295 (1997)

    Article  MathSciNet  Google Scholar 

  4. Tsujimoto, S., Hirota, R.: Ultradiscrete KdV equation. J. Phys. Soc. Jpn. 67, 1809–1810 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Tokihiro, T., Takahashi, D., Matsukidaira, J., Satsuma, J.: From soliton equations to integrable cellular automata through a limiting procedure. Phys. Rev. Lett. 76, 3247–3250 (1996)

    Article  Google Scholar 

  6. Tokihiro, T., Takahashi, D., Matsukidaira, J.: Box and ball system as a realization of ultradiscrete nonautonomous KP equation. J. Phys. A Math. Gen. 33(2000), 607–619 (2000)

    Article  MathSciNet  Google Scholar 

  7. Hirota, R.: Discrete analogue of a generalized Toda equation. J. Phys. Soc. Jpn. 50, 3785–3791 (1981)

    Article  MathSciNet  Google Scholar 

  8. Miwa, T.: On Hirota’s difference equations. Proc. Jpn. Acad. Ser. A. Math. Sci. 58, 9–12 (1982)

    Article  MathSciNet  Google Scholar 

  9. Shinzawa, N.: Soliton solution to the generalized discrete BKP equation and its Bäcklund transformation equations. Jpn. J. Ind. Appl. Math. 35, 915–937 (2018)

    Article  MathSciNet  Google Scholar 

  10. Nagai, H.: Mixed type soliton solution of the B type box and ball system (in Japanese). Rep. RIAM Symp. 25AO–S2, 65–70 (2014)

    Google Scholar 

  11. Nagai, H., Takahashi, D.: Bilinear equations and Bäcklund transformation for a generalized ultradiscrete soliton solution. J. Phys. A Math. Theor. 43, 375202 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetomo Nagai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Transformation

Appendix A: Transformation

We shall derive (4) from

$$\begin{aligned} {\bar{f}}(p, q, r) =\sum _{k_1=1}^2\sum _{k_2=1}^2\ldots \sum _{k_N=1}^2 \prod _{1\le i<j\le N} cf(t_i^{(k_j)}, t_j^{(k_i)}) \prod _{i=1}^N c_i^{(k_i)} \phi (t_i^{(k_i)}), \end{aligned}$$
(A.1)

which is a soliton solution of (1) given in [9]. Here \(t_i^{(k_i)}\) and \(c_i^{(k_i)}\) are arbitrary parameters, \(\phi (t)\) and cf(ts) are defined by (5) and (8). Using the gauge transformation, that is, by multiplying (A.1) with

$$\begin{aligned} \frac{1}{\prod _{1\le i<j\le N }cf(t_i^{(2)}, t_j^{(2)})\prod _{i=1} ^Nc_i^{(2)}\phi (t_i^{(2)})}, \end{aligned}$$

we have another form of soliton solution,

$$\begin{aligned} f(p, q, r) =\sum _{k_1=1}^2\sum _{k_2=1}^2\ldots \sum _{k_N=1}^2 \prod _{1\le i<j\le N} \frac{cf(t_i^{(k_j)}, t_j^{(k_i)})}{cf(t_i^{(2)}, t_j^{(2)}) } \prod _{i=1}^N \frac{c_i^{(k_i)} \phi (t_i^{(k_i)})}{c_i^{(2)} \phi (t_i^{(2)})}. \end{aligned}$$
(A.2)

Note that the term associated with

$$\begin{aligned} k_i={\left\{ \begin{array}{ll} 1 &{}\quad (i\in I:=\{i_1, i_2,\ldots , i_l \}) \\ 2 &{}\quad (i\in I^c:=[N]- \{i_1, i_2,\ldots , i_l \}) \end{array}\right. } \end{aligned}$$

in (A.2) is expressed by

$$\begin{aligned} \prod _{i\in I }\frac{c_i^{(1)}}{c_i^{(2)}}\frac{\phi (t_i^{(1)})}{\phi (t_i^{(2)})}\left( \prod _{\substack {1\le i<j\le N \\ i, j\in I }} \frac{cf(t_i^{(1)}, t_j^{(1)})}{cf(t_i^{(2)}, t_j^{(2)}) }\prod _{\substack {1\le i<j\le N \\ i\in I , j\in I^c} } \frac{cf(t_i^{(2)}, t_j^{(1)})}{cf(t_i^{(2)}, t_j^{(2)}) }\prod _{\substack {1\le i<j\le N \\ i\in I^c, j\in I} } \frac{cf(t_i^{(1)}, t_j^{(2)})}{cf(t_i^{(2)}, t_j^{(2)}) } \right) . \end{aligned}$$
(A.3)

If we replace free parameters \(c_i\) as

$$\begin{aligned} \frac{c_i^{(1)}}{c_i^{(2)}} \rightarrow c_i\prod _{\substack{1\le j\le N \\ j\not =i} } \frac{ cf(t_i^{(2)}, t_j^{(2)})}{ cf(t_i^{(2)}, t_j^{(1)})}, \end{aligned}$$

then (A.3) is reduced to

$$\begin{aligned} \prod _{i\in I }c_i\frac{\phi (t_i^{(1)})}{\phi (t_i^{(2)})}\prod _{\substack {i,j\in I \\ i<j } } b_{ij} \end{aligned}$$
(A.4)

since \(cf(t, s)=-cf(s, t)\) and

$$\begin{aligned} \prod _{\substack {i\in I \\ j\not =i } }b_{ij} = \prod _{\substack {i, j\in I \\ i<j } }b_{ij} \prod _{\substack {i, j\in I \\ i<j } }b_{ji} \prod _{\substack {i\in I, j \in I^c \\ i<j } }b_{ij} \prod _{\substack {j\in I, i \in I^c \\ i<j} } b_{ji} \end{aligned}$$

hold. Therefore (A.2) corresponds to (4).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagai, H., Shinzawa, N. Mixed soliton solutions for the ultradiscrete BKP equation and its reduction. Japan J. Indust. Appl. Math. 39, 777–800 (2022). https://doi.org/10.1007/s13160-022-00506-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00506-1

Keywords

Mathematics Subject Classification

Navigation