Skip to main content
Log in

Carr–Nadtochiy’s weak reflection principle for Markov chains on \(\mathbf {Z}^d\)

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

A Correction to this article was published on 08 October 2020

This article has been updated

Abstract

The reflection principle for Brownian motion gives a way to calculate the joint distribution of a hitting time and a one dimensional marginal. The Carr–Nadtochiy transform is a formulation that generalizes the reflection principle in this respect. The transform originated from a way to hedge so-called barrier options in the literature of financial mathematics. The existence of the transform has been established only for one dimensional diffusion processes. In the present paper, the existence is proved for a fairly general class of Markov chains in the multi dimensional lattice \(\mathbf {Z}^d\). The difficulty is that the reflection boundary is not a one-point set, contrasting the one dimensional cases. It is solved in this paper by looking at the problem in an algebraic way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Akahori, J., Barsotti, F. Imamura, Y.: The value of timing risk. arXiv e-prints. (2017). arXiv:1701.05695

  2. Akahori, J., Imamura, Y.: On a symmetrization of diffusion processes. Quant. Financ. 14(7), 1211–1216 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bowie, J., Carr, P.: Static simplicity. Risk 7(8), 45–49 (1994)

    Google Scholar 

  4. Carr, P., Roger, L.: Put-call symmetry: extensions and applications. Math. Financ. 19, 523–560 (2009)

    Article  MathSciNet  Google Scholar 

  5. Carr, P., Nadtochiy, S.: Static hedging under time-homogeneous diffusions. SIAM J. Financ. Math. 2(1), 794–838 (2011)

    Article  MathSciNet  Google Scholar 

  6. Cox, John C., Ross, Stephen A., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7(3), 229–263 (1979)

    Article  MathSciNet  Google Scholar 

  7. Chung, K.L., Walsh, J.B.: Markov Processes, Brownian Motion and Time Symmetry. Springer Science & Business Media, Berlin (2006)

    MATH  Google Scholar 

  8. Freedman, D.: Brownian Motion and Diffusion. Springer, New York (1983)

    Book  Google Scholar 

  9. Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E.: Managing smile risk. Wilmott Mag. pp. 84–108 (2002)

  10. Heston, Steven L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  MathSciNet  Google Scholar 

  11. Hishida, Y., Ishigaki, Y., Okumura, T.: A numerical scheme for expectations with first hitting time to smooth boundary. Asia Pac. Finan. Mark. 26, 553–565 (2019)

    Article  Google Scholar 

  12. Ida, Y., Tsuyoshi, K.: Hyperbolic symmetrization of heston type diffusion. Asia Pac. Finan. Mark. 26, 355–364 (2019)

    Article  Google Scholar 

  13. Ida, Y., Kinoshita, T., Matsumoto, T.: Symmetrization associated with hyperbolic reflection principle. Pac. J. Math. Ind. 10, 1 (2018). https://doi.org/10.1186/s40736-017-0035-2

    Article  MathSciNet  Google Scholar 

  14. Imamura, Y., Ishigaki, Y., Okumura, T.: A numerical scheme based on semi-static hedging strategy. Monte Carlo Methods Appl. 20(4), 223–235 (2014)

    Article  MathSciNet  Google Scholar 

  15. Imamura, Y., Takagi, K.: Semi-static hedging based on a generalized reflection principle on a multi dimensional Brownian motion. Asia Pac. Financ. Mark. 1(20), 71–81 (2013)

    Article  Google Scholar 

  16. Levy, E.: Pricing European average rate currency options. J. Int. Money Financ. 11(5), 474–491 (1992)

    Article  Google Scholar 

  17. Lévy, P.: Sur cerains processus stochastiques homogénes. Compos. Math. 7, 283–339 (1940)

    MATH  Google Scholar 

  18. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  19. Rubinstein, M.: Somewhere over the rainbow. Risk 4(11), 61–63 (1991)

    Google Scholar 

  20. Shiraya, K., Takahashi, A., Toda, M.: Pricing barrier and average options under stochastic volatility environment. Int. J. Comput. Financ. 15(2), 111–148 (2011)

    Article  Google Scholar 

  21. Shiraya, K., Takahashi, A., Yamada, T.: Pricing discrete barrier options under stochastic volatility. Asia Pac. Finan. Mark. 19(3), 205–232 (2012)

    Article  Google Scholar 

  22. Takahashi, A.: An asymptotic expansion approach to pricing financial contingent claims. Asia Pac. Finan. Mark. 6(2), 115–151 (1999)

    Article  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Numbe 20K03731.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Imamura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to equation renumbering.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imamura, Y. Carr–Nadtochiy’s weak reflection principle for Markov chains on \(\mathbf {Z}^d\). Japan J. Indust. Appl. Math. 38, 257–267 (2021). https://doi.org/10.1007/s13160-020-00436-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-020-00436-w

Keywords

Mathematics Subject Classification

Navigation