Skip to main content
Log in

Double-shift-invert Arnoldi method for computing the matrix exponential

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Computing the matrix exponential for large sparse matrices is essential for solving evolution equations numerically. Conventionally, the shift-invert Arnoldi method is used to compute a matrix exponential and a vector product. This method transforms the original matrix using a shift, and generates the Krylov subspace of the transformed matrix for approximation. The transformation makes the approximation converge faster. In this paper, a new method called the double-shift-invert Arnoldi method is explored. This method uses two shifts for transforming the matrix, and this transformation results in a faster convergence than the shift-invert Arnoldi method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andersson, J.E.: Approximation of \(e^{-x}\) by rational functions with concentrated negative poles. J. Approx. Theory 32, 85–95 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beckermann, B., Reichel, L.: Error estimates and evaluation of matrix functions via the faber transform. SIAM J. Numer. Anal. 47, 3849–3883 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berljafa, M., Güttel, S.: Parallelization of the rational Arnoldi algorithm. SIAM J. Sci. Comput. 39, S197–S221 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gallopoulos, E., Saad, Y.: Efficient Solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. 13, 1236–1264 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Göckler, T., Grimm, V.: Uniform approximation of \(\varphi \)-functions in exponential integrators by a rational Krylov subspace method with simple poles. SIAM J. Matrix Anal. Appl. 35, 1467–1489 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Güttel, S.: Rational Krylov Methods for Operator Functions. Ph.D. thesis. Technischen Universität Bergakademie Freiberg. (2010)

  7. Hashimoto, Y., Nodera, T.: Inexact shift-invert Arnoldi method for evolution equations. ANZIAM J. 58, E1–E27 (2016)

    Article  MathSciNet  Google Scholar 

  8. Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26, 1179–1193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Isaacson, S.A.: The reaction-diffusion master equation as an asymptotic approximation of diffusion to a small target. SIAM J. Appl. Math. 70, 77–111 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Moler, C., Van Loan, C.F.: Nineteen dubious ways to compute the exponential of a matrix. Twenty-five years later. SIAM Rev. 4, 49–53 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Moret, I., Novati, P.: RD-rational approximations of the matrix exponential. BIT Numer. Math. 44, 595–615 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Spijker, M.N.: Numerical ranges and stability estimates. Appl. Numer. Math. 13, 241–249 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Svoboda, Z.: The convective-diffusion equation and its use in building physics. Int. J. Arch. Sci. 1, 68–79 (2000)

    Google Scholar 

  17. Van den Eshof, J., Hochbruck, M.: Preconditioning lanczos approximations to the matrix exponential. SIAM J. Sci. Comput. 27, 1438–1457 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuka Hashimoto.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, Y., Nodera, T. Double-shift-invert Arnoldi method for computing the matrix exponential. Japan J. Indust. Appl. Math. 35, 727–738 (2018). https://doi.org/10.1007/s13160-018-0309-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-018-0309-9

Keywords

Mathematics Subject Classification

Navigation