Skip to main content
Log in

Approximating surface areas by interpolations on triangulations

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider surface area approximations by Lagrange and Crouzeix-Raviart interpolations on triangulations. For Lagrange interpolation, we give an alternative proof for Young’s classical result that claims the areas of inscribed polygonal surfaces converge to the area of the original surface under the maximum angle condition on the triangulation. For Crouzeix–Raviart interpolation we show that the approximated surface areas converge to the area of the original surface without any geometric conditions on the triangulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The sum of areas of triangles. The subscript ‘E’ of \(A_E\) stands for ‘Elementary’.

References

  1. Babuška, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13, 214–226 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  3. Brezis, H.: Functional Analysis, Sobolev Spaces, and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  4. Cesari, K.: Surface Area. Princeton University Press, Princeton (1956)

    MATH  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Methods for Elliptic Problems. North Holland, Amsterdam (1978) (reprint by SIAM 2008)

  6. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, New York (2004)

    Book  MATH  Google Scholar 

  7. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC, Boca Raton (1992)

    MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  9. Kobayashi, K., Tsuchiya, T.: A Babuška-Aziz type proof of the circumradius condition. Jpn. J. Ind. Appl. Math. 31, 193–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kobayashi, K., Tsuchiya, T.: On the circumradius condition for piecewise linear triangular elements. Jpn. J. Ind. Appl. Math. 32, 65–76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kobayashi, K., Tsuchiya, T.: A priori error estimates for Lagrange interpolation on triangles. Appl. Math. Praha 60, 485–499 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Laugesen, R.S., Siudeja, B.A.: Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J. Diff. Equ. 249, 118–135 (2010)

    Article  MATH  Google Scholar 

  13. Liu, X., Kikuchi, F.: Analysis and estimation of error constants for \(P_0\) and \(P_1\) interpolations over triangular finite elements. J. Math. Sci. Univ. Tokyo 17, 27–78 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 6, 286–292 (1960)

    Article  MATH  Google Scholar 

  15. Rademacher, H.: Über partielle und totale differenzierbarkeit von funktionen mehrerer vaiabeln und über die transformation der doppelintegrale. Math. Ann. 79, 340–359 (1919). doi:10.1007/BF01498415

    Article  MathSciNet  MATH  Google Scholar 

  16. Rademacher, H.: Über partielle und totale differenzierbarkeit von funktionen mehrerer vaiabeln II. Math. Ann. 81, 52–63 (1920). doi:10.1007/BF01563620

    Article  MathSciNet  Google Scholar 

  17. Radò, T.: On the problem of plateau, Springer, Berlin (1933) (reprinted by Chelsea, 1951)

  18. Radò, T.: Length and Area. American Mathematical Society, Providence (1948)

    Book  MATH  Google Scholar 

  19. Saks, S.: Theory of the Integral. Hafner Publishing Co., New York (1937) (reprint by Dover 2005)

  20. Young, W.H.: On the triangulation method of defining the area of a surface. Proc. Lond. Math. Soc. 19, 117–152 (1921). doi:10.1112/plms/s2-19.1.117

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were supported by JSPS KAKENHI Grant Numbers JP16H03950, JP25400198, and JP26400201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Tsuchiya.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Tsuchiya, T. Approximating surface areas by interpolations on triangulations. Japan J. Indust. Appl. Math. 34, 509–530 (2017). https://doi.org/10.1007/s13160-017-0253-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0253-0

Keywords

Mathematics Subject Classification

Navigation