Skip to main content
Log in

Finite difference approximation for nonlinear Schrödinger equations with application to blow-up computation

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a coherent analysis of the finite difference method to nonlinear Schrödinger (NLS) equations in one spatial dimension. We use the discrete \(H^1\) framework to establish well-posedness and error estimates in the \(L^\infty \) norm. The nonlinearity f(u) of a NLS equation is assumed to satisfy only a growth condition. We apply our results to computation of blow-up solutions for a NLS equation with the nonlinearity \(f(u)=-|u|^{2p}\), p being a positive real number. Particularly, we offer the numerical blow-up time \(T(h,\tau )\), where h and \(\tau \) are discretization parameters of space and time variables. We prove that \(T(h,\tau )\) converges to the blow-up time \(T_\infty \) of the solution of the original NLS equation. Several numerical examples are presented to confirm the validity of theoretical results. Furthermore, we infer from numerical investigation that the convergence of \(T(h,\tau )\) is at a second order rate in \(\tau \) if the Crank–Nicolson scheme is applied to time discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A., McKinney, W.R.: Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schr\(\ddot{o}\)dinger equation. SIAM J. Sci. Comput. 25, 186–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besse, C., Carles, R., Mauser, N.J., Stimming, H.P.: Monotonicity properties of the blow-up time for nonlinear Schrödinger equations, numerical evidence. Discrete Contin. Dyn. Syst. Ser. B 9, 11–36 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Cazenave, T.: Semilinear Schrödinger Equations. AMS, New York (2003)

    MATH  Google Scholar 

  6. Chen, Y.G.: Asymptotic behaviours of blowing-up solutions for finite difference analogue of \(u_t=u_{xx}+u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33, 541–574 (1986)

    MathSciNet  Google Scholar 

  7. Cho, C.H.: A finite difference scheme for blow-up solutions of nonlinear wave equations. Numer. Math. Theory Methods Appl. 3, 475–498 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Cho, C.H., Hamada, S., Okamoto, H.: On the finite difference approximation for a parabolic blow-up problem. Japan J. Indust. Appl. Math. 24, 131–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148, 397–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 46, 113–129 (1987)

    MATH  Google Scholar 

  12. Kavian, O.: A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations. Trans. Am. Math. Soc. 299, 193–203 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Merle, F., Raphael, P.: On universality of blow-up profile for \(L^2\) critical nonlinear Schrödinger equation. Invent. Math. 156, 565–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nakagawa, T.: Blowing up of a finite difference solution to \(u_t=u_{xx}+u^2\). Appl. Math. Optim. 2, 337–350 (1975/76)

  15. Nakagawa, T., Ushijima, T.: Finite element analysis of the semi-linear heat equation of blow-up type. In: Topics Numer. Anal. III. Academic Press, New York (1977)

  16. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  17. Saito, N., Sasaki, T.: Blow-up of finite-difference solutions to nonlinear wave equations. J. Math. Sci. Univ. Tokyo, 23(1), 349–380 (2016)

  18. Segal, I.: Non-linear semi-groups. Ann. Math. 78, 339–364 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sun, Z., Zhao, D.: On the \(L^\infty \) convergence of a difference scheme for coupled nonlinear Schrödinger equations. Comput. Math. Appl. 59, 3286–3300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thomée, V.: Finite difference methods for linear parabolic equations. In: Handbook of Numerical Analysis, vol. I. North-Holland, The Netherlands, pp. 5–196 (1990)

  21. Ushijima, T.K.: On the approximation of blow-up time for solutions of nonlinear parabolic equations. Publ. Res. Inst. Math. Sci. 36, 613–640 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, J.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60, 390–407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, J.: On the finite-time behaviour for nonlinear Schrödinger equations. Commun. Math. Phys. 162, 249–260 (1994)

    Article  MATH  Google Scholar 

  24. Zhou, G., Saito, N.: Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis. Numer. Math. doi:10.1007/s00211-016-0793-2

Download references

Acknowledgments

This work was supported by CREST, Japan Science and Technology Agency, and JSPS KAKENHI Grant Numbers 15H03635 and 15K13454.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norikazu Saito.

Appendices

Appendix 1: Well-posedness of (13)

The following results are not new for specialists of nonlinear Schrödinger equations. For example, Proposition 7.1 is fundamentally described in [5, Theorem 3.5.1]. However, results for more regular solutions are not given explicitly in [5]. If considering the Cauchy problem, we can use the smoothing property of the Schrödinger semigroup and obtain a regular (global-in-time) solution in a certain sense (see [11]). However, in the case of a bounded domain, any smoothing properties are not available. Therefore, we assume sufficiently smooth data f, g and \(u_0\) to obtain a smooth solution.

Let \(I=(0,L)\) for \(L>0\). Any function spaces considered in this appendix are still complex-valued. We introduce the following linear operators A and H of \(L^2(I)\rightarrow L^2(I)\) by

$$\begin{aligned} \mathcal {D}(A)= & {} H^2(I)\cap H_0^1(I),\quad A v=-\frac{d^2}{dx^2}v\quad (v\in \mathcal {D}(A)),\\ \mathcal {D}(H)= & {} \mathcal {D}(A),\quad Hv=iA v\quad (v\in \mathcal {D}(H)). \end{aligned}$$

The following results are well known (see [16]). Operator A is a positive and self-adjoint operator in \(L^2(I)\) and \(-A\) generates the analytic semigroup (of class \(C_0\)) \(e^{-tA}\) in \(L^2(I)\). The operator \(-H\) generates a \(C_0\) semigroup \(S(t)=e^{-itH}\) in \(L^2(I)\) and \(\Vert S(t)\Vert _{L^2(I)}=1\) for all \(t>0\).

When \(I=\mathbb {R}\), one can prove

$$\begin{aligned} \Vert S(t)\Vert _{H^1(I)}=1\quad (t>0) \end{aligned}$$

by the Fourier transform. However, it is not readily apparent that this equality remains valid if I is a bounded interval. Instead, we apply fractional powers \(A^\frac{1}{2}\) of A. We know that

$$\begin{aligned} \mathcal {D}(A^{\frac{1}{2}})=H^1_0(I). \end{aligned}$$

Therefore, as a norm of \(H_0^1(I)\), we can choose

$$\begin{aligned} |||v|||= \Vert A^{\frac{1}{2}}v\Vert _{L^2(I)}=\Vert \partial _x v\Vert _{L^2(I)}\, (v\in H_0^1(I)). \end{aligned}$$

By Poincaré’s inequality, we have

$$\begin{aligned} C^{-1}\Vert v\Vert _{H^1(I)}\le |||v|||\le C\Vert v\Vert _{H^1(I)}\quad (v\in H^1_0(I)). \end{aligned}$$

Then, we deduce the following results.

  • \(|||S(t)|||=1\) for all \(t>0\).

  • There exists a constant \(C_I>0\) such that \(\Vert v\Vert _{L^\infty (I)}\le C_I|||v|||\) for \(v\in H_0^1(I)\).

We make the following condition on the nonlinearity f of \(H^1_0(I)\rightarrow L^2(I)\).

Condition (f1) There exists a continuous, non-decreasing and positive function \(\omega (\eta )\) of \(\eta >0\) such that

$$\begin{aligned} \Vert A^{\frac{1}{2}}f(u)-A^{\frac{1}{2}}f(v)\Vert _{L^2(I)} \le \omega (M)\Vert A^{\frac{1}{2}}u-A^{\frac{1}{2}}v\Vert _{L^2(I)} \end{aligned}$$

for any \(u,v\in \mathcal {D}(A^{\frac{1}{2}})\) with \(\Vert A^{\frac{1}{2}}u\Vert _{L^2(I)},\Vert A^{\frac{1}{2}}v\Vert _{L^2(I)}\le M\) and \(M>0\). This inequality is written equivalently as

$$\begin{aligned} \Vert \partial _x f(u)-\partial _x f(v)\Vert _{L^2(I)} \le \omega (M)\Vert \partial _x u-\partial _x v\Vert _{L^2(I)} \end{aligned}$$

for any \(u,v\in H_0^1(I)\) with \(\Vert u\Vert _{H^1(I)},\Vert v\Vert _{H^1(I)}\le M\).

Proposition 7.1

Assume that Condition (f1) is satisfied and that \(g\in C^0([0,T];H^1_0(I))\). Then, for any \(u_0\in H_0^1(I)\), there exists \(T>0\) and a unique

$$\begin{aligned} u\in C^0([0,T];H^1_0(I))\cap C^1((0,T);[H^{1}_0(I)]') \end{aligned}$$

that satisfies

$$\begin{aligned}&\int _I i(\partial _tu)v~dx+\int _I (\partial _xu)(\partial _xv)~dx=\int _I f(u)v~dx+\int _I gv~dx\quad (\forall v\in H^1_0(I),\\&\quad \text{ a.e. } t\in (0,T)) \end{aligned}$$

with \(u(0,x)=u_0(x)\) for \(x\in I\). Moreover, if we define the maximal existence time \(T_\infty \) as \(T_\infty =\sup T\), then \(T_\infty <\infty \) implies \(\displaystyle {\lim _{t\rightarrow T_\infty }|||u(t)|||=\infty }\).

We then make the following condition for \(f:H^1_0(I)\rightarrow L^2(I)\) and \(2\le m\in \mathbb {Z}\).

Condition (f m ) For \(k=1,\ldots ,m\) and \(u\in \mathcal {D}(A^{m/2})\), we have \(f(u)\in \mathcal {D}(A^{k/2})\). Moreover, there exists a continuous, non-decreasing and positive function \(\omega _k(\eta )\) of \(\eta >0\) such that

$$\begin{aligned} \Vert A^{k/2}[f(u)-f(v)]\Vert _{L^2(I)} \le \omega _k(M)\Vert A^{k/2}(u-v)\Vert _{L^2(I)} \end{aligned}$$

for any \(u,v\in \mathcal {D}(A^{k/2})\) with \(\Vert A^{k/2}u\Vert _{L^2(I)},\Vert A^{k/2}v\Vert _{L^2(I)}\le M\).

Proposition 7.2

Let \(2\le m\in \mathbb {Z}\). Assume that Condition (fm) is satisfied and that \(g\in C^{[m/2]}([0,\infty );H^1_0(I))\). Then, for any \(u_0\in \mathcal {D}(A^{m/2})\), there exists \(T>0\) and a unique

$$\begin{aligned} u\in \bigcap _{k=0}^{[m/2]}C^k([0,T];\mathcal {D}(A^{m/2-k})) \end{aligned}$$

that satisfies

$$\begin{aligned} i\partial _tu+\partial _x^2u=f(u)+g(t,x) \quad (0<t<T,~x\in I) \end{aligned}$$

with \(u(0,t)=u_0(x)\) for \(x\in I\).

Those Propositions 7.1 and 7.2 are proved fundamentally using the same method used by Segal [18] (see also [5, proof of Theorem 3.3.1]).

Remark 7.3

For \(m\ge 1\), \(u_0\in \mathcal {D}(A^{m/2})\) implies that \(u_0=\partial _xu_0=\cdots =\partial _x^mu_0=0\) at \(x=0,L\).

Appendix 2: Proof of Proposition 2.3

Let \(f:\mathbb {C}\rightarrow \mathbb {C}\). Suppose that \(\phi ({\xi ,\eta })={\text {Re}}f(z)\) and \(\psi ({\xi ,\eta })={\text {Im}}f(z)\), \(z={\xi +i\eta }\), are both \(C^1\) functions of \(\mathbb {R}_{{\xi }}\times \mathbb {R}_{{\eta }}\rightarrow \mathbb {R}\) and that \(f(0)=0\) holds. First, we introduce a useful expression. We write

$$\begin{aligned} Df(z)=(\phi _{{\xi }}({\xi ,\eta }),\phi _{{\eta }}({\xi ,\eta }))^{\mathrm {T}}+i(\psi _{{\xi }}({\xi ,\eta }),\psi _{{\eta }}({\xi ,\eta }))^{\mathrm {T}}\qquad (z={\xi +i\eta }). \end{aligned}$$

In addition, for \(w={{a}+i{b}}\), define \(Df(z)\cdot w\) as

$$\begin{aligned} Df(z)\cdot w=\phi _{{\xi }}({\xi ,\eta }){a}+\phi _{{\eta }}({\xi ,\eta }){b} + i[\psi _{{\xi }}({\xi ,\eta }){a}+\psi _{{\eta }}({\xi ,\eta }){b}]. \end{aligned}$$

Then, if setting

$$\begin{aligned} |Df(z)|=\sqrt{\phi _{{\xi }}({\xi ,\eta })^2+\phi _{{\eta }}({\xi ,\eta })^2+\psi _{{\xi }}({\xi ,\eta })^2+\psi _{{\eta }}({\xi ,\eta })^2}, \end{aligned}$$

we have

$$\begin{aligned} |Df(z)\cdot w|\le |Df(z)|\cdot |w|\quad (z,~w\in \mathbb {C}). \end{aligned}$$

Furthermore, for \(R>0\), setting

$$\begin{aligned} \alpha (R)=\max _{|z|\le \sqrt{L}R} |Df(z)|, \end{aligned}$$

we can estimate as

$$\begin{aligned} |Df(z)-Df(w)|\le 2\alpha (R)\quad (|z|,|w|\le \sqrt{L}R). \end{aligned}$$
(91)

Let \(\varvec{u}=(u_1,\ldots ,u_N)^{\mathrm {T}},\varvec{v}=(v_1,\ldots ,v_N)^{\mathrm {T}}\in \mathbb {C}^N\) and \(u_0=u_{N+1}=v_0=v_{N+1}=0\). Then,

$$\begin{aligned} q_j&\equiv f(u_j)-f(v_j)-[f(u_{j-1})-f(v_{j-1})]\\&=\int _0^1 Df(p_j(s))\cdot [(u_j-v_j)-(u_{j-1}-v_{j-1})]~ds\\&\quad +\int _0^1 [Df(p_j(s))-Df(p_{j-1}(s))]\cdot (u_{j-1}-v_{j-1})~ds \end{aligned}$$

for \(1\le j\le N\), where \(p_j(s)=sv_j+(1-s)u_j\).

At this stage, we let \(R=|||\varvec{u}|||_h\wedge |||\varvec{v}|||_h\). Then, in view of Proposition 2.1 (i), we have \(|p_j(s)|,|p_{j-1}(s)|\le \sqrt{L}R\) and we can estimate as

$$\begin{aligned} |q_j|^2 \le 2\alpha (R)^2 [(u_j-v_j)-(u_{j-1}-v_{j-1})]^2+4\alpha (R)^2L|||\varvec{u}-\varvec{v}|||_h^2. \end{aligned}$$

Therefore,

$$\begin{aligned} |||\varvec{f}(\varvec{u})-\varvec{f}(\varvec{v})|||_h^2&=\sum _{j=1}^{N+1}\frac{|q_j|^2}{h^2}h\\&\le 2\alpha (R)^2\sum _{j=1}^{N+1}\frac{|(u_j-v_j)-(u_{j-1}-v_{j-1})|^2}{h^2}h\\&\quad +4\alpha (R)^2L^2|||\varvec{u}-\varvec{v}|||_h^2\\&= (2+4L^2) \alpha (R)^2|||\varvec{u}-\varvec{v}|||_h^2, \end{aligned}$$

which implies (21b) with \(C_{2f}(R)=\sqrt{2+4L^2}\alpha (R)=c_0(R)\).

Finally, (21a) follows by setting \(\varvec{v}=\varvec{0}\).

Appendix 3: Modified Newton method

To solve our finite difference scheme (14), at each time step \(t_n\), we must solve a nonlinear equation of the form

$$\begin{aligned} \mathcal {F}\varvec{u}= H\varvec{u}-K\varvec{v}+i{\Delta t}\left[ (1-\theta )\varvec{f}(\varvec{v})+\theta \varvec{f}(\varvec{u})+\varvec{g}^{n+\theta }\right] =\varvec{0}, \end{aligned}$$
(92)

where \(\varvec{u}=\varvec{u}^{n+1}\), \(\varvec{v}=\varvec{u}^{n}\), \({\Delta t}=\Delta t_n\), \(H=H_n\), and \(K=K_n\).

If decomposing the Eq. (92) into the real and imaginary parts, then we can apply any iterative methods for solving the system of equations of real functions. The standard Newton method is a powerful method. Another method is proposed in [2, §5]. However, if the nonlinearity f(z) is differentiable in the complex sense, we can use the complex Newton method (for the system of equations of complex functions). Consequently, MATLAB and Scilab are available to compute (92) using complex variables. However, \(f(z)=\alpha z|z|^m\) and \(f(z)=\alpha |z|^m\), \(\alpha \in \mathbb {C}\), \(m\ge 2\), are not differentiable in the complex sense so that the complex Newton method is not available. Instead, we offer a new iterative method that is a version of modified Newton methods to solve (92) using complex variables.

That is, we consider the following iteration: For an initial guess \(\varvec{u}_0\in \mathbb {C}^N\), we generate \(\{\varvec{u}_k\}_{k\ge 1}\) by

$$\begin{aligned} \varvec{u}_{k+1}&=\mathcal {N}\varvec{u}_k\nonumber \\&\equiv \varvec{u}_k-H^{-1} \mathcal {F}\varvec{u}_k \nonumber \\&=-i{\Delta t}\theta H^{-1}\varvec{f}(\varvec{u}_k)+H^{-1} [K\varvec{v}-i{\Delta t}(1-\theta )\varvec{f}(\varvec{v})-i{\Delta t} \varvec{g}^{n+\theta }]. \end{aligned}$$
(93)

This iterative method actually converges with a sufficiently small \({\Delta t}\), as stated in Proposition 9.1. Set \(B_{R}=\{z\in \mathbb {C}\mid |z|\le R\}\) and take \(\tilde{g}>0\) satisfying \(|||\varvec{g}^{n}|||_h\le \tilde{g}\) for \(0\le t_n\le T\).

Proposition 9.1

Assume that Condition (f) is satisfied. Let \(\varvec{v}\in \mathbb {C}^N\) and \(R=|||\varvec{v}|||_h\). Then, if

$$\begin{aligned} {\Delta t}\le \min \left\{ \frac{R}{~3\theta C_{1f}(2R)~},\ \frac{R}{~3(1-\theta )C_{1f}(R)~},\ \frac{R}{~3\tilde{g}~},\ \frac{1}{~2\theta C_{2f}(2R)~}\right\} , \end{aligned}$$
(94)

then \(\mathcal {N}\) is a contraction mapping from \(B_{2R}\) to \(B_{2R}\). Consequently, there exists a unique fixed point \(\varvec{u}\in B_{2R}\).

The proof is a direct consequence of Condition (f).

Example 9.2

We ignore the contribution of \(\tilde{g}\) to set \(\Delta t\) appropriately because \(\tilde{g}\) is not so large relative to R. Consider \(f(z)=\alpha u|u|^m\), \(\alpha \in \mathbb {C}\) and \(m\ge 2\). Then, (94) is written equivalently as

$$\begin{aligned} \Delta t \le \min \left\{ \frac{1}{3\theta c_1 2^{m+1}},\ \frac{1}{3(1-\theta )c_1}\right\} \frac{1}{R^m}, \end{aligned}$$
(95)

where \(c_1\) is the constant defined in Example 2.4. Therefore, in this case, to apply the iterative method (93), we must take

$$\begin{aligned} \Delta t_{k} =\tau \min \left\{ 1,\ \frac{1}{|||\varvec{u}^n|||_h^m}\right\} ,\quad 0<\tau \le \tau ', \end{aligned}$$
(96)

where

$$\begin{aligned} \tau '=\gamma \min \left\{ \frac{1}{3\theta c_1 2^{m+1}},\ \frac{1}{3(1-\theta )c_1}\right\} \end{aligned}$$
(97)

and \(\gamma \) is a constant taken from \(0<\gamma <1\). For the case \(f(z)=\alpha |z|^m\), \(c_1\) should be replaced by \(c_2\) in Example 2.4.

Remark 9.3

In view of (96), we must choose \(q=2p\) in (34) to solve (32). However, we have verified from numerical experimentation that a modified Newton method always converges by setting \(q=p\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, N., Sasaki, T. Finite difference approximation for nonlinear Schrödinger equations with application to blow-up computation. Japan J. Indust. Appl. Math. 33, 427–470 (2016). https://doi.org/10.1007/s13160-016-0218-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-016-0218-8

Keywords

Mathematics Subject Classification

Navigation