Skip to main content
Log in

Effect of Hummock-Forming Vegetation on Methane Emissions from a Temperate Sedge-Grass Marsh

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Plants affect CH4 emissions from wetlands by providing routes for CH4 ventilation from the soil and its re-oxidation, the outcome depending on the vertical distribution of the plant ventilating structures as related to water level. This study investigated the effect of elevated hummocks on CH4 emissions in a temperate wetland dominated by a hummock-forming sedge, Carex acuta L. Comparative measurements of CH4 fluxes from paired plots with or without hummocks revealed a prevailing positive difference interpreted as plant-mediated fluxes. All types of CH4 fluxes responded positively to water level with a hysteresis related to its recent dynamics. Seasonal medians of CH4 emissions from the ecosystem, based on fluxes from both types of plots, were 15.09 and 0.11 mg m−2 day−1 in the wet year 2012 and the dry year 2014, respectively. This relatively low magnitude of CH4 emissions, compared to values from similar habitats within the same range of water levels, is ascribed to the presence of hummocks. At water levels near the soil surface, hummocks extend above the water table and serve as aerobic micro-habitats in which plant structures avoid anaerobic stress and CH4 produced in the bulk soil and vented via deep roots can be re-oxidized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong W (1971) Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol Plant 25:192–197

    Article  Google Scholar 

  • Armstrong J, Armstrong W (1988) Phragmites australis - a preliminary study of soil oxidizing sites and internal gas transport pathways. New Phytol 108:373–382

    Article  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346

    Article  PubMed  Google Scholar 

  • Bubier JL (1995) The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. J Ecol 83:403–420

    Article  Google Scholar 

  • Bubier JL, Moore TR, Roulet NT (1993) Methane emissions from wetlands in the midboreal region of northern Ontario, Canada. Ecology 74:2240–2254

    Article  Google Scholar 

  • Crain CM, Bertness MD (2005) Community impacts of a tussock sedge: is ecosystem engineering important in benign habitats? Ecology 86:2695–2704

    Article  Google Scholar 

  • Ding W, Cai Z, Tsuruta H, Li X (2003) Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere 51:167–173

    Article  CAS  PubMed  Google Scholar 

  • Dušek J, Čížková H, Czerný R, Taufarová K, Šmídová M, Janouš D (2009) Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agric For Meteorol 149:1524–1530

    Article  Google Scholar 

  • Edwards KR, Picek T, Čížková H, Zemanová KM, Stará A (2015) Nutrient addition effects on carbon fluxes in wet grasslands with either organic or mineral soil. Wetlands 35:55–68

    Article  Google Scholar 

  • Ervin GN (2007) An experimental study on the facilitative effects of tussock structure among wetland plants. Wetlands 27:620–630

    Article  Google Scholar 

  • Faußer A, Dušek J, Čížková H, Hoppert M, Walther P, Kazda M (2013) Internal oxygen dynamics in rhizomes of Phragmites australis and presence of methanotrophs in root biofilms in a constructed wetland for wastewater treatment. Desalin Water Treat 51:3026–3031

    Article  Google Scholar 

  • Franchini AG, Erny I, Zeyer J (2014) Spatial variability of methane emissions from Swiss alpine fens. Wetl Ecol Manag 22:383–397

    Article  CAS  Google Scholar 

  • Heikkinen JEP, Maljanen M, Aurela M, Hargreaves KJ, Martikainen PJ (2002) Carbon dioxide and methane dynamics in a sub-Arctic peatland in northern Finland. Polar Res 21:49–62

    Article  Google Scholar 

  • Hendriks DMD, van Huissteden J, Dolman AJ (2010) Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow. Agric For Meteorol 150:757–774

    Article  Google Scholar 

  • Hollander M, Wolfe DA (1999) Nonparametric statistical Methods, 2nd edn. Wiley, New York

    Google Scholar 

  • Honissová M, Hovorka F, Kuncová Š, Moulisová L, Vítková J, Plsová M, Čížek J, Čížková H (2015) Seasonal dynamics of biomass partitioning in a tall sedge, Carex acuta L. Aquat Bot 125:64–71

    Article  Google Scholar 

  • Huttunen JT, Nykänen H, Turunen J, Martikainen PJ (2003) Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmos Environ 37:147–151

    Article  CAS  Google Scholar 

  • Jeník J, Kurka R, Husák Š (2002) Wetlands of the Třeboň Basin Biosphere Reserve in the central European context. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. A case study of the Třeboň Basin Biosphere Reserve. CRC Press, Boca Raton, pp 11–18

    Google Scholar 

  • Joabsson A, Christensen TR, Wallén B (1999) Vascular plant controls on methaneemissions from northern peatforming wetlands. Trends Ecol Evol 14:385–388

    Article  CAS  PubMed  Google Scholar 

  • Juszczak R, Augustin J (2013) Exchange of the greenhouse gases methane and nitrous oxide between the atmosphere and a temperate peatland in central Europe. Wetlands 33:895–907

    Article  Google Scholar 

  • Juutinen S, Alm J, Larmola T, Huttunen JT, Morero M, Saarnio S, Martikainen P, Silvola J (2003) Methane (CH4) release from littoral wetlands of boreal lakes during an extended flooding period. Glob Chang Biol 9:413–424

    Article  Google Scholar 

  • Kettunen A, Kaitala V, Aim J, Silvola J, Nykänen H, Martikainen PJ (2000) Predicting variations in methane emissions from boreal peatlands through regression models. Boreal Environ Res 5:115–131

    CAS  Google Scholar 

  • Končalová H (1990) Anatomical adaptations to waterlogging in roots of wetland graminoids: limitations and drawbacks. Aquat Bot 38:127–134

    Article  Google Scholar 

  • Končalová H, Pokorný J, Květ J (1988) Root ventilation in Carex gracilis Curt.: diffusion or mass flow? Aquat Bot 30:149–155

    Article  Google Scholar 

  • Kowalska N, Chojnicki BH, Rinne J, Haapanala S, Siedlecki P, Urbaniak M, Juszczak R, Olejnik J (2013) Measurements of methane emission from a temperate wetland by the eddy covariance method. International Agrophysics 27:283–290

    Article  CAS  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review Journal of Plant Nutrition and Soil Science 163:421–431

    Article  CAS  Google Scholar 

  • Květ J, Lukavská J, Tetter M (2002) Biomass and net primary production in graminoid vegetation. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. A case study of the Třeboň Basin Biosphere Reserve. CRC Press, Boca Raton, pp 293–299

    Google Scholar 

  • Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review Annals of Botany 105:141–153

    Article  CAS  PubMed  Google Scholar 

  • Lai DYF (2009) Methane dynamics in northern Peatlands: a review. Pedosphere 19:409–421

    Article  CAS  Google Scholar 

  • Lawrence BA, Zedler JB (2011) Formation of tussocks by sedges: effects of hydroperiod and nutrients. Ecol Appl 21:1745–1759

    Article  PubMed  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  CAS  Google Scholar 

  • Livingston GP, Hutchinson GL (1995) Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson PA, Harriss RC (eds) Biogenic trace gases: measuring emissions from soil and water. Methods in Ecology. Blackwell Science Ltd., Oxford, pp 14–51

    Google Scholar 

  • MacDonald JA, Fowler D, Hargreaves KJ, Skiba U, Leith ID, Murray MB (1998) Methane emission rates from a northern wetland; response to temperature, water table and transport. Atmos Environ 32:3219–3227

    Article  CAS  Google Scholar 

  • McEwing KR, Fisher JP, Zona D (2015) Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic. Plant Soil 388:37–52

  • Merino C, Nannipieri P, Matus F (2015) Soil carbon controlled by plant, microorganism and mineralogy interactions. J Soil Sci Plant Nutr 15:321–332

    CAS  Google Scholar 

  • Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44:651–664

    Article  CAS  Google Scholar 

  • Moore TR, Roulet NT (1993) Methane flux: water table relations in northern wetlands. Geophys Res Lett 20:587–590

    Article  CAS  Google Scholar 

  • Moore TR, Young AD, Bubier JL, Humphreys ER, Lafleur PM, Roulet NT (2011) A multi-year record of methane flux at the Mer Bleue bog, southern Canada. Ecosystems 14:646–657

    Article  CAS  Google Scholar 

  • Nishikawa Y (1990) Role of rhizomes in tussock formation by Carex thunbergii Var. appendiculata. Ecol Res 5:261–269

    Article  Google Scholar 

  • Perelman SB, Burkart SE, León RJC (2003) The role of a native tussock grass (Paspalum quadrifarium lam.) in structuring plant communities in the flooding pampa grasslands, Argentina. Biodivers Conserv 12:225–238

    Article  Google Scholar 

  • Picek T, Čížková H, Dušek J (2007) Greenhouse gas emissions from a constructed wetland – plants as important source of carbon. Ecol Eng 27:153–165

    Google Scholar 

  • Popp TJ, Chanton JP, Whiting GJ, Grant N (1999) Methane stable isotope distribution at a Carex dominated fen in north Central Alberta. Glob Biogeochem Cycles 13:1063–1077

    Article  CAS  Google Scholar 

  • Prach K (2008) Vegetation changes in a wet meadow complex during the past half-century. Folia Geobotanica 43:119–130

    Article  Google Scholar 

  • Prach K, Soukupová L (2002) Alterations in the wet Meadows vegetation pattern. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. A case study of the Třeboň Basin Biosphere Reserve. CRC Press, Boca Raton, pp 243–254

    Google Scholar 

  • Rinne J, Riutta T, Pihlatie M, Aurela M, Haapanala S, Tuovinen J-P, Tuittila E-S, Vesala T (2007) Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus 59:449–457

    Article  Google Scholar 

  • Royston P (1982a) An extension of Shapiro and Wilk’s W test for normality to large samples. Appl Stat 31:115–124

    Article  Google Scholar 

  • Royston P (1982b) Algorithm AS 181: the W test for normality. Appl Stat 31:176–180

    Article  Google Scholar 

  • Royston P (1995) Remark AS R94: a remark on algorithm AS 181: the W test for normality. Appl Stat 44:547–551

    Article  Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    Article  CAS  Google Scholar 

  • Siljanen HMP, Saari A, Krause S, Lensu A, Abell GCJ, Bodrossy L, Bodelier PLE, Martikainen PJ (2010) Hydrology is reflected in the functioning and community composition of methanotrophs in the littoral wetland of a boreal lake. FEMS Microbiol Ecol 75:430–445

    Article  PubMed  Google Scholar 

  • Soukup A, Armstrong W, Schreiber L, Franke R, Votrubová O (2007) Apoplastic barriers to radial oxygen loss (ROL) and solute penetration: a chemical and functional comparison of the exodermis of two wetland species - Phragmites australis and Glyceria maxima. New Phytol 173:264–278

    Article  CAS  PubMed  Google Scholar 

  • Tsuyuzaki S, Nakano T, Kuniyoshi S, Fukuda M (2001) Methane flux in grassy marshlands near Kolyma River, north-eastern Siberia. Soil Biol Biochem 33:1419–1423

    Article  CAS  Google Scholar 

  • Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila E, Waddington JM, White JR, Wickland KP, Wilmking M (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Chang Biol 20:2183–2197

    Article  PubMed  Google Scholar 

  • Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364:794–795

    Article  CAS  Google Scholar 

  • Windsor J, Moore TR, Roulet NT (1992) Episodic fluxes of methane from subarctic fens. Can J Soil Sci 7:441–452

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by project No. P504/11/1151 of the Grant Agency of the Czech Republic and project No. 081/2016/Z of the Grant Agency of the University of South Bohemia. Research infrastructure was supported by the National Sustainability Program I (NPU I) grant No. LO1415 and by the CzeCOS program, grant No. LM2015061 supported by the Ministry of Education, Youth and Sports of the Czech Republic. We thank M. Nešpor for help with the excavation and processing of the samples of belowground biomass, Š. Kuncová for providing data of vertical structure of study stand, and K.R. Edwards for language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vítková Jitka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jitka, V., Jiří, D., Stanislav, S. et al. Effect of Hummock-Forming Vegetation on Methane Emissions from a Temperate Sedge-Grass Marsh. Wetlands 37, 675–686 (2017). https://doi.org/10.1007/s13157-017-0898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-017-0898-0

Keywords

Navigation