Skip to main content
Log in

Characterization of the Govanda Formation limestones: chemostratigraphy and tectonic setting of the last marine carbonate rocks in the Arabia–Eurasia suture zone, NW Zagros fold-thrust belt

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Three stratigraphic sections were sampled to demystify the geochemical properties of the shallow marine Govanda Formation, located in the Arabia–Eurasia suture zone at  ~ 1500 m above sea level. This study examined the geochemistry of major, trace, rare earth elements (REE) and the petrography of carbonate rocks of the lower–middle Miocene Govanda Formation. Microfacies analysis shows that packstone and wackestone dominate the ticker western section, whereas the eastern sections contain grainstone and clastic units. The carbonates were deposited in shallow marine reef-fore-reef environments unaffected by diagenetic alterations. The limestone beds have a consistent seawater-like REE pattern, slightly negative Ce anomalies (Ce/Ce* = 0.79 in massive limestone–MSL and = 0.89 in marly limestone–ML), relatively positive Eu anomalies (Eu/Eu* = 1.18 in MSL and = 1.14 in ML), and moderately high Y/Ho ratios (37.69 n = 29). The REE + Y pattern of samples mainly retains its original characters, but the variations in the total rare earth element (ΣREE) content are detected, which could reflect minor detrital material inputs. Authigenic U, negative Ce anomalies, and trace element ratio indices such as V/Cr, U/Th, Ni/Co, and V/(V + Ni) indicate suboxic–anoxic deposition condition. A positive correlation of Al2O3% contents with Fe2O3% links the carbonate units of the Govanda Formation to marine limestones. The Rb–Sr-Ba ternary diagram, and Sr/Ba vs. Sr/Rb, Al2O3% vs. Fe2O3%, and Ce/Ce* vs. Sm/Yb bivariate analyses imply that the studied limestones originated in a passive margin tectonic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  • Abdula RA, Chicho J, Surdashy A, Nourmohammadi MS, Hamad E, Muhammad MM, Smail AA, Ashoor A (2018) Sedimentology of the Govanda Formation at Gali Baza locality. Kurdistan Region, Iraq: Iraqi Bull of Geol Mining 14(1):1–12

    Google Scholar 

  • Allen MB, Armstrong HA (2008) Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeo Palaeoclim Palaeoeco 265(1–2):52–58

    Article  Google Scholar 

  • Armstrong-Altrin JS, Verma SP, Madhavaraju J, Lee YI, Ramasamy S (2003) Geochemistry of Late Miocene Kudankulam Limestones, South India. Intern Geol Rev 45:16–26

    Article  Google Scholar 

  • Azmy K, Brand U, Sylvester P, Gleeson SA, Logan A, Bitner MA (2011) Biogenic and abiogenic low-Mg calcite (bLMC and aLMC): Evaluation of seawater-REE composition, water masses, and carbonate diagenesis. Chem Geol 280:180–190

    Article  Google Scholar 

  • Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Cheml Geol 93:219–230

    Article  Google Scholar 

  • Bau M, Koschinsky A, Dulski P, Hein JR (1996) Comparison of the partitioning behaviors of yittrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim Et Cosmochim Acta 60:1709–1725

    Article  Google Scholar 

  • Bellanca A, Masetti D, Neri R (1997) Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): assessing REE sensitivity to environmental changes. Chem Geol 141(3–4):141–152

    Article  Google Scholar 

  • Buday T, (1980) The Regional Geology of Iraq, Vol 1: Stratigraphy and Paleogeography. Publications of Geological Survey of Iraq, Baghdad: 445

  • Caetano-Filho S, Paula-Santos GM, Dias-Brito D (2018) Carbonate REE + Y signatures from the restricted early marine phase of South Atlantic Ocean (late Aptian–Albian): the influence of early anoxic diagenesis on shale-normalized REE + Y patterns of ancient carbonate rocks. Paleogeo Palaeoclim Palaeoeco 500:69–83

    Article  Google Scholar 

  • Chen J, Algeo TJ, Zhao L, Chen ZQ, Cao L, Zhang L, Li Y (2015) Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Earth-Sci Rev 149:181–202. https://doi.org/10.1016/j.earscirev.2015.01.013

    Article  Google Scholar 

  • Condie KC (1991) Another look at rare earth elements in shales. Geochim Et Cosmochim Acta 55:2527–2531

    Article  Google Scholar 

  • De Baar HJ (1991) On cerium anomalies in the Sargasso Sea. Geochim Et Cosmochim Acta 55:2981–2983

    Article  Google Scholar 

  • De Baar HJ, Bacon MP, Brewer PG (1985) Rare earth elements in the Pacific and Atlantic oceans. Geochim Et Cosmochim Acta 49:1943–1959

    Article  Google Scholar 

  • De Baar HJ, German CR, Elderfield H, Van Gaans P (1988) Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim Et Cosmochim Acta 52:1203–1219

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional textures. AAPG Mem 1:108–121

    Google Scholar 

  • Elderfield H (1988) The oceanic chemistry of the rare earth elements. Philos Trans R Soc Lond 325:105–126

    Article  Google Scholar 

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Article  Google Scholar 

  • Elderfield H, Upstill-Goddard R, Sholkovitz ER (1990) The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters: Geochim. et Cosmochim. Acta 54:971–991

    Google Scholar 

  • German CR, Elderfield H (1989) Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochim Et Cosmochim Acta 53:2561–2571

    Article  Google Scholar 

  • Greaves MJ, Elderfield H, Sholkovitz ER (1999) Aeolian sources of rare earth elements to the Western Pacific Ocean. Mari Chem 68:31–38. https://doi.org/10.1016/S0304-4203(99)00063-8

    Article  Google Scholar 

  • Haldar SK, (2000) Introduction to Mineralogy and Petrology. (2nd ed), The Min Geol and Metal Inst (MGMI) Kolkata, West Bengal, India, The Indian Geological Congress (IGC).

  • Hempton MR (1987) Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics 6(6):687–705. https://doi.org/10.1029/TC006i006p00687

    Article  Google Scholar 

  • Jassim SZ, Buday T, Cichea I, Prouza V (2006) Late Permian-Liassic Megasequence AP6. In: JASSIM, S.Z., GOFF, J. (eds) Regional geology of Iraq. Dolin, Prague and Moravian Museum, Brno: 104–116.

  • Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in the C isotopic composition of seawater; stratigraphic and biogeochemical implications. Precam Rese 73:27–49

    Article  Google Scholar 

  • Kaufman AJ, Jacobsen SB, Knoll AH (1993) The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth Planetary Sci Lett 120:409–430

    Article  Google Scholar 

  • Koshnaw RI, Stockli DF, Schlunegger F (2019) Timing of the Arabia-Eurasia continental collision—Evidence from detrital zircon U-Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland. Kurdistan Region of Iraq Geology 47(1):47–50. https://doi.org/10.1130/G45499.1

    Article  Google Scholar 

  • Koshnaw IR, Horton KB, Stockli DF, Barber DE, Tamar-Agha MY (2020) Sediment routing in the Zagros foreland basin: drainage reorganization and a shift from axial to transverse sediment dispersal in the Kurdistan region of Iraq. Basin Res 32(4):688–715. https://doi.org/10.1111/bre.12391

    Article  Google Scholar 

  • Koshnaw RI, Schlunegger F, Stockli DF (2021) Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia-Eurasia collision, NW Zagros fold–thrust belt. Kurdistan Region Iraq Solid Earth 12(11):2479–2501. https://doi.org/10.5194/se-12-2479-2021

    Article  Google Scholar 

  • Li J, Gui H, Chen L, Fang P, Li X, Zhang J, Wang Y (2022) Geochemistry of upper Palaeozoic ‘thin-layer’ limestones in the southern North China Craton: implications for closure of the northeastern Palaeotethys Ocean. Geol Mag 159:494–510. https://doi.org/10.1017/S0016756821001126

    Article  Google Scholar 

  • Liu XM, Hardisty DS, Lyons TW, Swart PK (2019) Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the great Bahamas Bank. Con Et Cosmochi Acta 248:25–42. https://doi.org/10.1016/j.gca.2018.12.028

    Article  Google Scholar 

  • Lokesh BP, (2015) Sedimentology provenance and depositional environments of Kurnool group palnad sub basin Andhra Pradesh South India. PhD. dissertation, University of Mysore, Karnataka, India

  • Madhavaraju J, Lee Y (2009) Geochemistry of the Dalmiapuram formation of the Uttatur Group (Early Cretaceous), Cauvery basin, southeastern India: implications on provenance and paleo-redox conditions. Rev Mexic De Cienc Geol 26:380–394

    Google Scholar 

  • Madhavaraju J, Ramasamy S (1999) Rare earth elements in limestones of Kallakurichchi Formation of Ariyalur Group, Tiruchirappalli Cretaceous, Tamil Nadu. J of Geol Soci of India 54:291–301

    Google Scholar 

  • Madhavaraju J, González-León CM, Lee YI, Armstrong-Altrin JS, Reyes-Campero LM (2010) Geochemistry of the mural formation (Aptian-Albian) of the Bisbee group, Northern Sonora. Mexico Cretac Res 31:400–414

    Article  Google Scholar 

  • Madhavaraju J, Ramírez-Montoya E, Monreal R, González-León CM et al (2016) Paleoclimate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: constraints from clay mineralogy and geochemistry. Revi Mexic De Cienci Geoló 33(1):34–48

    Google Scholar 

  • Mazumdar A, Tanaka K, Takahashi T, Kawabe I (2003) Characteristics of rare earth element abundances in shallow marine continental platform carbonates of Late Neoproterozoic successions from India. Geochem J 37:277–289

    Article  Google Scholar 

  • Mclennan SM, (1989). Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds.), Geochemistry and Mineralogy of Rare Earth Elements. Revi in Min, 21: 169–200

  • Miller KG, Browning JV, Schmelz WJ, Kopp RE, Mountain GS, Wright JD (2020) Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Adv, Sci. https://doi.org/10.1126/sciadv.aaz1346

    Book  Google Scholar 

  • Mishra PK, Mohanty SP (2021) Geochemistry of carbonate rocks of the Chilpi Group, Bastar Craton, India: Implications on ocean paleoredox conditions at the late Paleoproterozoic Era. Precam Resea 353:106023

    Article  Google Scholar 

  • Mohammadkhani H, Hosseini-Barzi M, Sadeghi A, Pomar L (2022) Middle Miocene short-lived Tethyan seaway through the Zagros foreland basin: facies analysis and paleoenvironmental reconstruction of mixed siliciclastic- carbonate deposits of Mishan Formation, Dezful Embayment. SW Iran Marine Petroleum Geology 140:105649. https://doi.org/10.1016/j.marpetgeo.2022.105649

    Article  Google Scholar 

  • Murray RW, Leinen M (1993) Chemical transport to the seafloor of the equatorial Pacific Ocean across a Latitudinal transect at 135 °W. Tracking sedimentary major, trace and rare earth element fluxes at the Equator and the Intertropical Convergence Zone. Geochim Cosmochim Acta 57:4141–4163

    Article  Google Scholar 

  • Murray RW, Brink MRB, Brumsack HJ, Gerlach DC, Russ GP III (1991) Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce∗: results from ODP Leg 127. Geochim Cosmochim Acta 55:2453–2466

    Article  Google Scholar 

  • Nagarajan R, Madhavaraju J, Armstron-Altrin JS, Nagendra R (2011) Geochemistry of Neoproterozoic limestones of the Shahabad formation, Bhima Basin, Karnataka, Southern India. Geos J 15:9–25

    Article  Google Scholar 

  • Nath BN, Bau M, Ramalingeswara RB, Rao CM (1997) Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochim Cosmochim Acta 61:2375–2388

    Article  Google Scholar 

  • Özyurt M, Kirmaci MZ, Al-Aasm I, Hollis C, Tasli K, Kandemir R (2020) REE Characteristics of lower cretaceous limestone succession in Gümü¸ shane, NE Turkey: implications for ocean paleoredox conditions and diagenetic alteration. Minerals 10(683):510

    Google Scholar 

  • Piepgras DJ, Jacobsen SB (1992) The behaviours of rare earth elements in seawater: Precise determination of ferromanganese crusts. Geochim Et Cosmochim Acta 56:1851–1862

    Article  Google Scholar 

  • Piper DZ (1974) Rare earth elements in the sedimentary cycle, a summary. Chem Geol 14:285–304

    Article  Google Scholar 

  • Sholkovitz ER (1988) Rare earth elements in the sediments of the North Atlantic ocean, Amazon delta, and east China Sea: reinterpretation of terrigenous input patterns to the oceans. Ameri J of Scie 288:236–281

    Article  Google Scholar 

  • Sholkovitz ER (1990) Rare earth elements in marine sediments and geochemical standards. Chem Geol 88:333–347

    Article  Google Scholar 

  • Sissakian VK, Fouad SF (2014) Geological Map of Sulaimaniyah Quadrangle, scale 1: 250 000, 2nd ed., Iraq Geological Survey (GEOSURV) Publications, Baghdad, Iraq.

  • Smail AA (2015) Sedimentology and stratigraphy of Govanda Formation, Unpublished MSc. University of Salahadin, Thesis, p 156

    Google Scholar 

  • Taylor SR, Mclennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford, p 312

    Google Scholar 

  • Tobia FH, Aqrawi AM (2016) Geochemistry of rare earth elements in carbonate rocks of the Mirga Mir Formation (Lower Triassic), Kurdistan Region. Iraq Arab J of Geos 9:259

    Article  Google Scholar 

  • Van Bellen RC, (1959) Stratigraphic Lexicon of Iraq: Lexique Stratigraphique International, Asie (Iraq). III, Asie Fascicule 10a, Iraq, Tertiary/by RC van Bellen, Mesozoic and Palaeozoic/by Dunnington HV, Wetzel R, Morton DM, Centre National de la Recherche Scientifique, Paris, DL.

  • Veizer J, (1983) Chemical diagenesis of carbonates: theory and application of trace element technique. In: Stable Isotopes in Sedimentary Geology. ed. by Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J. and Land, L. S. SEPM Short Course, 10. SEPM, Dallas, 3.1–3.100.

  • Viehmann S, Bau M, Hoffmann JE, Münker C (2015) Geochemistry of the Krivoy Rog banded Iron Formation, Ukraine, and the impact of peak episodes of increased global magmatic activity on the trace element composition of Precambrian seawater. Preca Resea 270:165–180

    Article  Google Scholar 

  • Wang YL, Liu Y-G, Schmitt RA (1986) Rare earth element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at∼ 54 My. Geochim Cosmochim Acta 50:1337–1355

    Article  Google Scholar 

  • Wang W, Bolhar R, Zhou M, Zhao X (2018) Enhanced terrestrial input into Paleoproterozoic to Mesoproterozoic carbonates in the southwestern South China block during the fragmentation of the Columbia supercontinent. Preca Resea 313:1–17

    Article  Google Scholar 

  • Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64:1557–1565

    Article  Google Scholar 

  • Wignall PB, Myers KJ (1988) Interpreting the benthic oxygen levels in mud rocks, a new approach. Geology 16(5):452–455

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zadeh PG, Adabi MH, Hisada KI, Hosseini-Barzi M, Sadeghi A, Ghassemi MR (2017) Revised version of the Cenozoic collision along the Zagros orogen: Insights from Cr-spinel and sandstone modal analyses. Scientific Report 7:10828. https://doi.org/10.1038/s41598-017-11042-1

    Article  Google Scholar 

  • Zhang J, Nozaki Y (1996) Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean. Geochim Et Cosmochim Acta 60:4631–4644

    Article  Google Scholar 

  • Zhang K-J, Xia B, Zhang Y-X, Liu W-L, Zeng L, Li J-F, Xu L-F (2014) Central Tibetan Meso-Tethyan oceanic plateau. Lithos 210:278–288

    Article  Google Scholar 

  • Zhang K-J, Li Q-H, Yan L-L, Zeng L, Lu L, Zhang Y-X, Hui J, Jin X, Tang X-C (2017) Geochemistry of limestones deposited in various plate tectonic settings. Earth Sci Rev 167:27–46

    Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Dr. Azad T. Saeed and Prof. Dr. Sardar M. Balaky (Soran University) for their assistance during fieldwork. We extend our appreciation to Prof. Dr. Yawooz A. Kettanah (Dalhousie University) for his invaluable scientific guidance and discussion. We would also like to acknowledge the anonymous reviewers for their helpful comments.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Research methodology, data collecting, data analysis, and interpretation of results were all conducted by Zh S Abdulrehman. Fieldwork, data collecting, and methodology were all supervised by Assistant Professor A M Aqrawi. Review, correction, and helpful suggestions for improvement were all offered by Dr. R I Koshnaw and Asst. Prof. A M Aqrawi.

Corresponding author

Correspondence to Zhin S. Abdulrehman.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulrehman, Z.S., Aqrawi, A.M. & Koshnaw, R.I. Characterization of the Govanda Formation limestones: chemostratigraphy and tectonic setting of the last marine carbonate rocks in the Arabia–Eurasia suture zone, NW Zagros fold-thrust belt. Carbonates Evaporites 38, 72 (2023). https://doi.org/10.1007/s13146-023-00897-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-023-00897-3

Keywords

Navigation