Skip to main content
Log in

Mixed carbonate-siliciclastic reservoir characterization and hydrocarbon accumulation process of the Ganchaigou area in the western Qaidam Basin, Tibet Plateau

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The reservoir characteristics and palaeo-fluid evolution process of Ganchaigou area in west Qaidam basin was analyzed through microscopic observation, fluid inclusions, quantitative grain fluorescence and tectonic evolution history. The reservoir rock in the Ganchaigou is dominated by carbonate rock and the pore space. The Ganchaigou area has experienced two stages of hydrocarbon charge and the destruction of late shallow reservoirs: the first stage was the deposition period of the Shangganchaigou Formation (approximately 27 Ma), which experienced low-mature and immature crude oil charge, with a Ro range from 0.35 to 0.72%. It has the characteristics of continuous accumulation of shale oil under self-sealing and self-storage conditions. The corresponding fluid inclusions are mainly yellow–brown and yellow in fluorescence color. The development of saline lacustrine source rocks, the early rapid burial of source rocks and tight carbonate-siliciclastic reservoir made the accumulation of early crude oil possible. The second stage is the late deposition period of the Xiayoushashan Formation (approximately 15 Ma ago), which experienced mature crude oil charge, with a Ro range from 0.51 to1.11%. Affected by the Himalayan orogenic movement, the shallow and deep traps formed a vertical stacking relationship, leading to a deep and shallow multilayered hydrocarbon accumulation model. After the deposition of the Shangyoushashan Formation, orogenic activities in the Eastern Kunlun Range and Altyn Tage Range intensified, a large amount of denudation in the shallow strata occurred, and the integrity of shallow local traps was destroyed, resulting in the loss of crude oil from the shallow traps and a large amount of oil sands forming in outcrop. The traps developed in deep strata still have great exploration potential in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baur F, Hosford Scheirer A, Peters KE (2018) Past, present, and future of basin and petroleum system modeling. AAPG Bull 102(4):549–561. https://doi.org/10.1306/08281717049

    Article  Google Scholar 

  • Bush MA, Saylor JE, Horton BK, Nie J (2016) Growth of the Qaidam Basin during cenozoic exhumation in the northern Tibetan Plateau: Inferences from depositional patterns and multiproxy detrital provenance signatures. Lithosphere 8(1):58–82. https://doi.org/10.1130/L449.1

    Article  Google Scholar 

  • Campbell AE (2005) Shelf-geometry response to changes in relative sea level on a mixed carbonate–siliciclastic shelf in the Guyana Basin. Sed Geol 175(1):259–275. https://doi.org/10.1016/j.sedgeo.2004.09.003

    Article  Google Scholar 

  • Cheng F, Jolivet M, Fu S, Fu S, Zhang Q, Guan S, Yu X, Guo Z (2014) Northward growth of the Qimen Tagh range: a new model accounting for the late Neogene strike-slip deformation of the SW Qaidam Basin. Tectonophysics 632:32–47. https://doi.org/10.1016/j.tecto.2014.05.034

    Article  Google Scholar 

  • Cheng F, Guo Z, Jenkins HS, Fu S, Cheng X (2015) Initial rupture and displacement on the Altyn Tagh fault, northern Tibetan Plateau: constraints based on residual Mesozoic to Cenozoic strata in the western Qaidam Basin. Geosphere 11(3):921–942. https://doi.org/10.1130/GES01070.1

    Article  Google Scholar 

  • Cheng F, Jolivet M, Fu S, Zhang C, Zhang Q, Guo Z (2016) Large-scale displacement along the Altyn Tagh Fault (North Tibet) since its Eocene initiation: Insight from detrital zircon U-Pb geochronology and subsurface data. Tectonophysics 677–678:261–279. https://doi.org/10.1016/j.tecto.2016.04.023

    Article  Google Scholar 

  • Cheng F, Garzione C, Jolivet M, Guo Z, Zhang D, Zhang C (2018a) A new sediment accumulation model of cenozoic depositional ages from the Qaidam basin, Tibetan Plateau. J Geophys Res Earth Surf 123(11):3101–3121. https://doi.org/10.1029/2018JF004645

    Article  Google Scholar 

  • Cheng X, Zhang D, Jolivet M, Yu X, Du W, Liu R, Guo Z (2018b) Cenozoic structural inversion from transtension to transpression in Yingxiong Range, western Qaidam Basin: new insights into strike-slip superimposition controlled by Altyn Tagh and Eastern Kunlun faults. Tectonophysics 723:229–241. https://doi.org/10.1016/j.tecto.2017.12.019

    Article  Google Scholar 

  • Cheng F, Garzione CN, Jolivet M, Guo Z, Zhang D, Zhang C, Zhang Q (2019) Initial deformation of the northern Tibetan plateau: insights from deposition of the Lulehe formation in the Qaidam Basin. Tectonics 38(2):741–766. https://doi.org/10.1029/2018TC005214

    Article  Google Scholar 

  • Chiarella D, Longhitano SG, Tropeano M (2017) Types of mixing and heterogeneities in siliciclastic-carbonate sediments. Mar Pet Geol 88:617–627. https://doi.org/10.1016/j.marpetgeo.2017.09.010

    Article  Google Scholar 

  • Chung SL, Lo CH, Lee TY (1998) Diachronous uplift of the Tibetan plateau starting 40? Myr Ago. Nat 394(6695):769–773. https://doi.org/10.1038/29511

    Article  Google Scholar 

  • Dolan JF (1989) Eustatic and tectonic controls on deposition of hybrid siliciclastic/carbonate basinal cycles: discussion with example. AAPG Bull 101(3):422–439. https://doi.org/10.1306/44B4AA0F-170A-11D7-8645000102C1865D

    Article  Google Scholar 

  • Doyle LJ, Roberts HH (1988) Carbonate-clastic transitions. Elsevier, New York, p p142

    Google Scholar 

  • Dupont-Nivet G, Lippert PC, Van Hinsbergen DJ, Meijers MJ, Kapp P (2010) Palaeolatitude and age of the Indo-Asia collision: palaeomagnetic constraints. Geophys J Int 182(3):1189–1198. https://doi.org/10.1111/j.1365-246X.2010.04697.x

    Article  Google Scholar 

  • Feng J, Hu K, Cao J, Wang L (2011) A review on mixed rocks of terrigenous clastic and carbonates and their petroleum-gas geological significance. Geol J China Univ 17(2):297–307

    Google Scholar 

  • Feng J, Cao J, Hu K, Peng X, Chen Y, Wang Y, Wang M (2013) Dissolution and its impacts on reservoir formation in moderately to deeply buried strata of mixed siliciclastic–carbonate sediments, northwestern Qaidam Basin, northwest China. Mar Pet Geol 39(1):124–137. https://doi.org/10.1016/j.marpetgeo.2012.09.002

    Article  Google Scholar 

  • Fu B, Awata Y (2007) Displacement and timing of left-lateral faulting in the Kunlun Fault Zone, northern Tibet, inferred from geologic and geomorphic features. J Asian Earth Sci 29(2):253–265. https://doi.org/10.1016/j.jseaes.2006.03.004

    Article  Google Scholar 

  • Gao G, Yang S, Qu T (2018) Research status of mixing sediments and their relationship with petroleum enrichment. Geol Sci Technol Information 37(06):82–88 (In Chinese with English abstract)

    Google Scholar 

  • García-García F, Soria JM, Viseras C, Fernández J (2009) High-frequency rhythmicity in a mixed siliciclastic–carbonate shelf (Late Miocene, Guadix Basin, Spain): a model of interplay between climatic oscillations, subsidence, and sediment dispersal. J Sediment Res 79(5):302–315. https://doi.org/10.2110/jsr.2009.028

    Article  Google Scholar 

  • García-Hidalgo JF, Gil J, Segura M, Domínguez C (2007) Internal anatomy of a mixed siliciclastic–carbonate platform: the late cenomanian-mid turonian at the southern margin of the Spanish Central System. Sedimentology 54(6):1245–1271. https://doi.org/10.1111/j.1365-3091.2007.00880.x

    Article  Google Scholar 

  • Garzanti E, Van Haver T (1988) The indus clastics: Forearc basin sedimentation in the Ladakh Himalaya (India). Sed Geol 59(3–4):237–249. https://doi.org/10.1016/0037-0738(88)90078-4

    Article  Google Scholar 

  • Goldstein RH (2001) Fluid inclusions in sedimentary and diagenetic systems. Lithos 55(1):159–193. https://doi.org/10.1016/S0024-4937(00)00044-X

    Article  Google Scholar 

  • Gong L, Fu X, Wang Z, Gao S, Jabbari H, Yue W, Liu B (2019) A new approach for characterization and prediction of natural fracture occurrence in tight oil sandstones with intense anisotropy. AAPG Bull 103(6):1383–1400. https://doi.org/10.1306/12131818054

    Article  Google Scholar 

  • Gong L, Wang J, Gao S, Fu X, Liu B, Miao F, Zhou X, Meng Q (2021) Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs. J Petrol Sci Eng 203:108655. https://doi.org/10.1016/j.petrol.2021.108655

    Article  Google Scholar 

  • Green OR, Searle MP, Corfield RI, Corfield RM (2008) Cretaceous-Tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya (Northwest India). J Geol 116(4):331–353. https://doi.org/10.1086/588831

    Article  Google Scholar 

  • Guan S, Zhang S, Zhang Y, Yuan X, Guan J, Meng Q, Zhang B (2017) Boundary effect and hydrocarbon accumulation pattern of paleogene hydrocarbon generation depression in the western Qaidam basin. Acta Petrolei Sinica 38(11):1217–1229 (In Chinese with English abstract)

    Google Scholar 

  • Guo R, Zhang Y, Chen X et al (2019) High-frequency cycles and paleogeomorphic characteristics of the upper member of the lower Ganchaigou Formation in Yingxi area Qaidam Basin. Acta Sedimantologica Sinica 37(04):812–824 (In Chinese with English abstract)

    Google Scholar 

  • Gussow WC (1954) Differential entrapment of oil and gas: a fundamental principle. AAPG Bull 38(5):816–853. https://doi.org/10.1306/5CEADF11-16BB-11D7-8645000102C1865D

    Article  Google Scholar 

  • Harrison TM, Copeland P, Kidd WSF (1992) Raising tibet. Science 255(5052):1663–1670. https://doi.org/10.1126/science.255.5052.1663

    Article  Google Scholar 

  • Hu X, Garzanti E, Moore T, Raffi I (2015) Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology 43(10):859–862. https://doi.org/10.1130/G36872.1

    Article  Google Scholar 

  • Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Malavieille J, Wu C (2003) Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: new constraints on the age of the kunlun fault. Tectonics 22(5):1052. https://doi.org/10.1029/2002TC001428

    Article  Google Scholar 

  • Li ZX, Gao J, Zheng C, Liu CL, Ma YS, Zhao WY (2015) Present-day flow and tectonic –thermal since the late Paleozoic time of the Qaidam basin. Chin J Geophys 58(10):3687–3705. https://doi.org/10.6038/cjg20151021

    Article  Google Scholar 

  • Liu K, Eadington P (2005) Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history. Org Geochem 36(7):1023–1036. https://doi.org/10.1016/j.orggeochem.2005.02.008

    Article  Google Scholar 

  • Liu K, Eadington P, Middleton H, Fenton S, Cable T (2007) Applying quantitative fluorescence techniques to investigate petroleum charge history of sedimentary basins in Australia and Papuan New Guinea. J Petrol Sci Eng 57(1):139–151. https://doi.org/10.1016/j.petrol.2005.11.019

    Article  Google Scholar 

  • Liu K, George SC, Lu X, Gong S, Tian H, Gui L (2014) Innovative fluorescence spectroscopic techniques for rapidly characterising oil inclusions. Org Geochem 72:34–45. https://doi.org/10.1016/j.orggeochem.2014.04.010

    Article  Google Scholar 

  • Liu Z, Zhang Y, Song S, Li S, Long G, Zhao J, Xia Z (2021) Mixed carbonate rocks lithofacies and reservoirs controlling mechanisms in the saline lacustrine basin in Yingxi area, Qaidam Basin NW China. Pet Explor Dev 48(01):80–94. https://doi.org/10.1016/S1876-3804(21)60006-X

    Article  Google Scholar 

  • Meng QR, Fang X, Burchfiel BC, Wang E (2008) Cenozoic tectonic development of the Qaidam Basin in the northeastern Tibetan Plateau. Investig into Tectonics Tibetan Plateau: Geol Soc Am Special Paper 444:1–24

    Google Scholar 

  • Meyer B, Tapponnier P, Bourjot L, Metivier F, Gaudemer Y, Peltzer G, Zhitai C (1998) Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys J Int 135(1):1–47. https://doi.org/10.1046/j.1365-246X.1998.00567.x

    Article  Google Scholar 

  • Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189(4201):419–426. https://doi.org/10.1126/science.189.4201.419

    Article  Google Scholar 

  • Mount JF (1984) Mixing of siliciclastic and carbonate sediments in shallow shelf environments. Geology 12(7):432–435. https://doi.org/10.1130/0091-7613

    Article  Google Scholar 

  • Munz IA (2001) Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications. Lithos 55(1):195–212. https://doi.org/10.1016/S0024-4937(00)00045-1

    Article  Google Scholar 

  • Palermo D, Aigner T, Geluk M, Poeppelreiter M, Pipping K (2008) Reservoir potential of a lacustrine mixed carbonate/siliciclastic gas reservoir: the lower Trassic Rogenstein in the Netherlands. J Pet Geol 31(1):61–96

    Article  Google Scholar 

  • Ping H, Chen H, Thiéry R, George SC (2017) Effects of oil cracking on fluorescence color, homogenization temperature and trapping pressure reconstruction of oil inclusions from deeply buried reservoirs in the northern Dongying depression, Bohai Bay Basin, China. Mar Pet Geol 80:538–562. https://doi.org/10.1016/j.marpetgeo.2016.12.024

    Article  Google Scholar 

  • Ping H, Chen H, George SC, Li C, Hu S (2019) Relationship between the fluorescence color of oil inclusions and thermal maturity in the Dongying depression, Bohai Bay Basin, China: Part 1 fluorescence evolution of oil in the context of hydrous pyrolysis experiments with increasing maturity. Mar Pet Geol 100:1–19. https://doi.org/10.1016/j.marpetgeo.2018.10.053

    Article  Google Scholar 

  • Rashid F, Glover PWJ, Lorinczi P, Collier R, Lawrence J (2015) Porosity and permeability of tight carbonate reservoir rocks in the north of Iraq. J Petrol Sci Eng 133:147–161. https://doi.org/10.1016/j.petrol.2015.05.009

    Article  Google Scholar 

  • Rashid F, Glover PWJ, Lorinczi P, Hussein D, Lawrence JA (2017) Microstructural controls on reservoir quality in tight oil carbonate reservoir rocks. J Petrol Sci Eng 156:814–826. https://doi.org/10.1016/j.petrol.2017.06.056

    Article  Google Scholar 

  • Roberts HH (1987) Modern carbonate-siliciclastic transitions: Humid and arid tropical examples. Sed Geol 50(1–3):25–65. https://doi.org/10.1016/0037-0738(87)90027-3

    Article  Google Scholar 

  • Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS, Li Y (2008) Constraints on the early uplift history of the Tibetan Plateau. PNAS 13(105):4987–4992. https://doi.org/10.1073/pnas.0703595105

    Article  Google Scholar 

  • Wang L (2018) Controlling mechanism of Tertiary saline depositional system on hydrocarbon accumulation of Yingxiongling structural belt in the western Qaidam basin, China. Master’s thesis. Research Institute of Petroleum Exploration and Development, Beijing, pp 23–30 (In Chinese with English abstract)

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer Science and Business Media, Berlin

    Book  Google Scholar 

  • Wu H, Zhao M, Zhuo Q, Lu X (2015) Hydrocarbon accumulation prospect and charge history of the Northern Monocline Belt in Kuqa depression of Tarim basin Western China. Nat Gas Geosci 26(12):2325–2335. https://doi.org/10.1176/j.issn.1672-1926.2015.12.2325 (In Chinese with English abstract)

    Article  Google Scholar 

  • Wu H, Zhao M, Zhuo Q, Xu Z, Bai D, Zhou Y, Zhang B, Wang L (2016a) Hydrocarbon accumulation process analysis of Dina 2 condensate gasfield in Kuqa Depression. J xi’an Shiyou Univ (Nat Sci Edition) 31(03):30–38 (In Chinese with English abstract)

    Google Scholar 

  • Wu H, Zhao M, Zhuo Q, Lu X, Li W, Zeng F, Zhao A (2016b) Palaeofluid evolution process in well block Tubei 1 in the Kuqa depression Tarim Basin. Nat Gas Industry B 3(2):129–138. https://doi.org/10.1016/j.ngib.2016.03.007

    Article  Google Scholar 

  • Wu H, Zhao M, Zhuo Q, Lu X, Gui L, Li W, Xu Z (2016c) Quantitative analysis of the efect of salt on geothermal temperature and source rock evolution: a case study of Kuqa foreland basin Western China. Pet Explor Dev 43(4):602–610. https://doi.org/10.1016/S1876-3804(16)30070-2

    Article  Google Scholar 

  • Wu H, Zhao M, Zhuo Q, Lu X, Wang L, Li W, Deng Y (2020) The effect of salt on the evolution of a subsalt sandstone reservoir in the Kuqa foreland basin, western China. Carbonates Evaporites 35(3):1–12. https://doi.org/10.1007/s13146-020-00604-6

    Article  Google Scholar 

  • Wu H, Zhang Z, Liu S, Wang Z, Zhuo Q, Lu X, Liu H (2021a) Controlling factors of hydrocarbon accumulation and differential distribution in the western Qaidam Basin, Tibet Plateau. Aust J Earth Sci. https://doi.org/10.1080/08120099.2022.2000492

    Article  Google Scholar 

  • Wu H, Liu S, Wang L, Liu Y, Wang Z, Zhuo Q, Zhang G, Shen X, Liu H (2021b) Fault reactivation and its effect on the formation of source rock——a case study of western Qaidam basin Tibet Plateau. Acta Geologica Sinca 95(06):1921–1934. https://doi.org/10.19762/j.cnki.dizhixuebao.2021b211 (In Chinese with English abstract)

    Article  Google Scholar 

  • Yang C, Sha A (1990) Sedimentary environment of the middle development Qujing formation, Qujing Yunnan Province: a kind of mixing sedimentation of terrigenous clastics and carbonate. Acta Sedimantologica Sinica 02:59–66 (In Chinese with English abstract)

    Google Scholar 

  • Yin A, Dang Y, Zhang M (2007) Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam Basin and the Eastern Kunlun Range. Geol Soc Am Spec Pap 433:369–390. https://doi.org/10.1130/2007.2433(18)

    Article  Google Scholar 

  • Yin A, Dang YQ, Wang LC, Jiang WM, Zhou SP, Chen XH, McRivette MW (2008a) Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. Geol Soc Am Bull 120(7–8):813–846. https://doi.org/10.1130/B26180.1

    Article  Google Scholar 

  • Yin A, Dang YQ, Zhang M, Chen XH, McRivette MW (2008b) Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geol Soc Am Bull 120(7–8):847–876. https://doi.org/10.1130/B26232.1

    Article  Google Scholar 

  • Yose LA, Heller PL (1989) Sea-level control of mixed-carbonate-siliciclastic, gravity-flow deposition: lower part of the Keeler Canyon Formation (Pennsylvanian), southeastern California. GSA Bull 101(3):427–439. https://doi.org/10.1130/0016-7606

    Article  Google Scholar 

  • Yu J, Pang J, Wang Y, Zheng D, Liu C, Wang W, Xiao L (2019) Mid-Miocene uplift of the northern Qilian Shan as a result of the northward growth of the northern Tibetan Plateau. Geosphere 15(2):423–432. https://doi.org/10.1130/GES01520.1

    Article  Google Scholar 

  • Zhang L, Ding L, Yang D, Xu Q, Cai F, Liu D (2012) Origin of middle Miocene leucogranites and rhyolites on the Tibetan Plateau: constraints on the timing of crustal thickening and uplift of its northern boundary. Chin Sci Bull 57(5):511–524. https://doi.org/10.1007/s11434-011-4813-4

    Article  Google Scholar 

  • Zhang B, He Y, Chen Y, Meng Q, Yuan L (2017a) Geochemical characteristics and oil accumulation significance of the high quality saline lacustrine source rocks in the western Qaidam Basin. NW China Acta Petrolei Sinica 38(10):1158–1167 (In Chinese with English abstract)

    Google Scholar 

  • Zhang B, He Y, Chen Y, Meng Q, Huang J, Yuan L (2017b) Formation mechanism of excellent saline lacustrine source rocks in western Qaidam basin. Acta Petrolei Sinica 38(10):1158–1167 (In Chinese with English abstract)

    Google Scholar 

  • Zhao Y, Chen H (2008) The relationship between fluorescence colors of oil inclusions and their maturities. Earth Science J China Univ Geosci 01:91–96 (In Chinese with English abstract)

    Article  Google Scholar 

  • Zhisheng A, Kutzbach JE, Prell WL (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late miocene times. Nature 411(6833):62. https://doi.org/10.1038/35075035

    Article  Google Scholar 

Download references

Funding

China National Petroleum Corporation Prospective Research Project, Grant No: 2021DJ0303, 2021DJ0302, PetroChina Science and Technology Innovation Project (CN), Grant No: 2016E-0101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Liu, H., Wang, L. et al. Mixed carbonate-siliciclastic reservoir characterization and hydrocarbon accumulation process of the Ganchaigou area in the western Qaidam Basin, Tibet Plateau. Carbonates Evaporites 37, 26 (2022). https://doi.org/10.1007/s13146-022-00769-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-022-00769-2

Keywords

Navigation