Skip to main content
Log in

A comparison of hydro-geochemistry and stable isotope composition of travertine-depositing springs, Garab in NE Iran and Pamukkale in SW Turkey

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

In this study, the hydro-geochemistry and stable isotope compositions (δ18O, δ2H, and δ13C) of travertine-depositing springs were investigated in two regions of Garab and Pamukkale, located in NE-Iran and SW-Turkey, respectively. The physical, chemical and isotopic dataset of water and travertine samples were obtained in situ measurements, laboratory analysis and from the literature. According to the high EC values (~ 2400 and ~ 10,500 μS/cm), the average δ13C-DIC values of water samples (10.4 and 7.2‰ VPDB), and its δ13C–CO2 values (1.5 and − 1.8‰ VPDB), it seems that the Garab and Pamukkale spring water were supplying from deep thermal groundwater with thermogenic origins and with contribution of carbonate dissolution through the rock-water interactions process. The more concentrations of Na+, K+, and Cl in Garab water are related to subsequent admixture processes, which is originated from dissolving overloaded impure dissolve materials during upwelling water toward the ground level. The more enriched δ13C and δ18O values of Garab travertine samples (10.4 and − 7.1‰ VPDB, respectively) than that of Pamukkale travertine (7.2 and − 10.4‰ VPDB, respectively) is due to more CO2 degassing. The isotopic compositions of precipitation in both Garab (δ2H = 7.2∗δ18O + 11.2‰) and Pamukkale (δ2H = 8∗δ18O + 16‰) areas are characterized by greater d-excess compared to GMWL but smaller than of Mediterranean area. Although the isotopic compositions of both Garab and Pamukkale springs show the meteoric origin; however, the deviation from meteoric water lines is probably evident to oxygen isotope exchange with the deep host bedrock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alçiçek H, Varol B, Özkul M (2007) Sedimentary facies, depositional environments and palaeogeographic evolution of the Neogene Denizli Basin, SW Anatolia. Turk Sediment Geol 202:596–637

    Article  Google Scholar 

  • Altunel E (1994) Active tectonics and the evolution of Quaternary travertines at Pamukkale, Western Turkey. PhD thesis, University of Bristol, p 236

  • Altunel E, Hancock PL (1993) Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey. Geol J 28(3–4):335–346

    Article  Google Scholar 

  • Anzalone E, Ferreri V, Sprovieri M, D’Argenio B (2007) Travertines as hydrologic archives: the case of the Pontecagnano deposits (southern Italy). Adv Water Resour 30(10):2159–2175

    Article  Google Scholar 

  • Atabey E (2002) The formation of fissure ridge type laminated travertine-tufa deposits microscopical cheacteristics and diagenesis, Kirşehir, central Anatolia. Bull Mineral Res Explor Inst Turkey 123–124:59–70

    Google Scholar 

  • Bayari CS, Pekkan E, Ozyurt NN (2009) Obruks, as giant collapse dolines caused by hypogenic karstification in central Anatolia, Turkey: analysis of likely formation processes. Hydrogeol J 17(2):327–345

    Article  Google Scholar 

  • Brogi A, Capezzuoli E (2009) Travertine deposition and faulting: the fault-related travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy). Int J Earth Sci 98(4):931–947

    Article  Google Scholar 

  • Brogi A, Capezzuoli E, Aqué R, Branca M, Voltaggio M (2010) Studying travertines for neotectonics investigations: middle-Late Pleistocene syn-tectonic travertine deposition at Serre di Rapolano (Northern Apennines, Italy). Int J Earth Sci 99(6):1383–1398

    Article  Google Scholar 

  • Çakır Z (1999) Along-strike discontinuity of active normal faults and its influence on quaternary travertine deposition: examples from western Turkey. Turk J Earth Sci 8:67–80

    Google Scholar 

  • Chafetz HS, Guidry SA (2003) Deposition and diagenesis of mammoth hot springs travertine, yellowstone National Park, Wyoming, USA. Can J Earth Sci 40(11):1515–1529

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, FL, p 328

    Google Scholar 

  • Craig H (1961) Isotopic variation in meteoric waters. Sci N.Y. 133:1702–1703

    Article  Google Scholar 

  • Crossey LJ, Fischer TP, Patchett PJ, Karlstrom KE, Hilton DR, Newell DL, Huntoon P, Reynolds AC, de Leeuw GAM (2006) Dissected hydrologic system at the Grand Canyon; interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. Geology 34(1):25–28

    Article  Google Scholar 

  • Di Benedetto F, Montegrossi G, Minissale A, Pardi LA, Romanelli M, Tassi F, Delgado Huertas A, Pampin EM, Vaselli O, Borrini D (2011) Biotic and inorganic control on travertine deposition at Bullicame 3 spring (Viterbo, Italy): a multidisciplinary approach. Geochim Cosmochim Acta 75:4441–4455

    Article  Google Scholar 

  • Dilsiz C (2006) Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data. Hydrogeol J 14(4):562–572

    Article  Google Scholar 

  • Domínguez-Villar D, Vázquez-Navarro JA, Krklec K (2017) The role of gypsum and/or dolomite dissolution in tufa precipitation: lessons from the hydrochemistry of a carbonate–sulphate karst system. Earth Surf Proc Land 42(2):245–258

    Article  Google Scholar 

  • Ekmekçi M, Günay G, Şimşek Ş (1995) Morphology of rim stone pools, Pamukkale, western Turkey. Cave Karst Sci 22:103–106

    Google Scholar 

  • Filiz S (1984) Investigation of the important geothermal areas by using C, H, O isotopes. In: Proceeding of the utilization of geothermal energy for electric power generation and space heating, Florence, Italy. Ref. No. EP/SEM.9/R.3

  • Flores Márquez EL, Jiménez-Suárez G, Martínez-Serrano RG, Chávez RE, Silva-Pére D (2006) Study of geothermal water intrusion due to groundwater exploitation in the Puebla Valley aquifer system, Mexico. Hydrogeol J 14(7):1216–1230

    Article  Google Scholar 

  • Gat JR, Carmi I (1970) Evolution in the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Article  Google Scholar 

  • Goleij F, Mahboubi A, Khanehbad M, Moussavi- Harami R (2018) Sedimentology and hydro-geochemistry of Garab travertines in southeast of Mashhad, Iran. Geopersia 8(2):157–170

    Google Scholar 

  • Han GL, Liu CQ (2004) Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem Geol 204:1–21

    Article  Google Scholar 

  • Han GL, Tang Y, Xu ZF (2010) Fluvial geochemistry of rivers draining karst terrain in southwest China. J Asian Earth Sci 38:65–75

    Article  Google Scholar 

  • Hancock PL, Altunel E (1997) Faulted archaeological relies at Hierapolis (Pamukkale), Turkey. J Geodyn 24:21–36

    Article  Google Scholar 

  • Herhsey RL, Mizell SA, Earman S (2010) Chemical and physical characteristics of springs dischargingfrom regional flow systems of the carbonate-rock province of the Great Basin, western United States. Hydrogeol J 18(4):1007–1026

    Article  Google Scholar 

  • Heydarizad M, Raeisi E, Sorí R, Gimeno L (2019) Developing meteoric water lines for Iran based on air masses and moisture sources. Water 11(11):2359

    Article  Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry. Springer, Berlin. p, p 201

    Book  Google Scholar 

  • Karimpour MH, Stern CR, Farmer GL (2010) Zircon U-Pb geochronology, Sr-Nd isotope analyses, and petrogenetic study of the Dehnow diorite and Kuhsangi granodiorite (Paleo-Tethys), NE Iran. J Asian Earth Sci 37:384–393

    Article  Google Scholar 

  • Kele S, Özkul M, Fórizs I, Gökgöz A, Baykara MO, Alçiçek MC, Németh T (2011) Stable isotope geochemical study of Pamukkale travertines: new evidences of low-temperature non-equilibrium calcite water fractionation. Sed Geol 238:191–212

    Article  Google Scholar 

  • Keshavarzi B, Moore F, Mosaferi M, Rahmani F (2011) The source of natural arsenic contamination in groundwater, west of Iran. Water Qual Expos Health 3:135–147

    Article  Google Scholar 

  • Lang YC, Liu CQ, Zhao ZQ, Li SL, Han GL (2006) Geochemistry of surface and ground water in Guiyang, China: water/rock interaction and pollution in a karst hydrological system. Appl Geochem 21(6):887–903

    Article  Google Scholar 

  • Ma R, Wang Y, Sun Z, Zheng C, Ma T, Prommer H (2011) Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Appl Geochem 26:884–897

    Article  Google Scholar 

  • Mansouri Daneshvar MR (2015) Climatic impacts on hydrogeochemical characteristics of mineralized springs: a case study of the Garab travertine zone in the northeast of Iran. Arab J Geosci 8(7):4895–4906

    Article  Google Scholar 

  • Mansouri Daneshvar MR, Pourali M (2015) Hydrogeochemical and geomorphological investigation of travertine deposition in the Garab Spring region, NE Iran. Sustain Water Resour Manag 1(3):253–262

    Article  Google Scholar 

  • Minissale A, Kerrick DM, Magro G, Murrell MT, Paladini M, Rihs S, Sturchio NC, Tassi F, Vaselli O (2002) Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatic implications. Earth Planet Sci Lett 203(2):709–728

    Article  Google Scholar 

  • Mohammadzadeh H (2009) The quality and isotope geochemistry of Garow saline water springs, Mashhad-Iran. Proc Goldschmidt Conf 73(13S):A891

    Google Scholar 

  • Mohammadzadeh H (2010) The meteoric relationship for 18O and 2H in precipitations and isotopic compositions of water resources in Mashhad area (NE Iran): the first Azad university international geology conference. Mashhad, pp 555–559

  • Mohammadzadeh H, Clark ID (2011) Bioattenuation in groundwater impacted by landfill leachate traced with δ13C. Ground Water 49(6):880–890

    Article  Google Scholar 

  • Mohammadzadeh H, Heydarizad M (2019) δ18O and δ2H characteristics of moisture sources and their role in surface water recharge in the north-east Iran. Isot Environ Health Stud 55(6):550–565

    Article  Google Scholar 

  • Mohammadzadeh H, Kazemi M (2017) Geofluids assessment of the Ayub and Shafa hot springs in Kopet-Dagh zone (NE Iran): an isotopic geochemistry approach. Geofluids. https://doi.org/10.1155/2017/6358680

    Article  Google Scholar 

  • Mohammadzadeh H, Clark ID, Marschner M, St-Jean G (2005) Compound specific isotopic analysis (CSIA) of landfill leachate DOC components. Chem Geol 218:3–13

    Article  Google Scholar 

  • Özkul M, Varol B, Alçiçek MC (2002) Depositional environments and petrography of denizli travertines. Miner Res Explor Bull 125:13–29

    Google Scholar 

  • Özkul M, Gökgöz A, Horvatinčić N (2010) Depositional properties and geochemistry of Holocene perched springline tufa deposits and associated spring waters: a case study from the Denizli province, Western Turkey. In: Pedley HM (ed) Tufas and speleothems: unravelling the microbial and physical controls, the geological society, London. Special Publications vol 336, pp 245–262

  • Özkul M, Kele S, Gökgöz A, Shen CC, Jones B, Baykara MO, Fόrizs I, Németh T, Chang YW, Alçiçek MC (2013) Comparison of the quaternary travertine sites in the Denizli extensional basin based on their depositional and geochemical data. Sed Geol 294:179–204

    Article  Google Scholar 

  • Özler HM (2000) Water balance and water quality in the Çürüksu basin, western Turkey. Hydrogeol J 7(4):405–418

    Article  Google Scholar 

  • Panichi C, Tongiorgi E (1976) Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of central and southern Italy: a preliminary prospection method of geothermal areas. In: Proceedings of the 2nd U.N. symposium on the development and use of geothermal energy, San Francisco, 20–29 May 1975, pp 815–825

  • Pazand K, Hezarkhani A, Ghanbari Y, Aghavali N (2012) Groundwater geochemistry in the Meshkinshahr basin of Ardabil province in Iran. Environ Earth Sci 65:871–879

    Article  Google Scholar 

  • Pedley HM (2009) Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology 56:221–246

    Article  Google Scholar 

  • Pentecost A (2005) Travertine. Springer Verlag, Berlin, p 445

    Google Scholar 

  • Petitta M, Primavera P, Tuccimei P, Aravena R (2011) Interaction between deep and shallow groundwater systems in areas affected by quaternary tectonics (Central Italy): a geochemical and isotope approach. Environ Earth Sci 63(1):11–30

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25(6):914–923

    Article  Google Scholar 

  • Ryu JS, Lee KS, Chang HW (2007) Hydrogeochemical and isotopic investigations of the Han River Basin, South Korea. J Hydrol 345:50–60

    Article  Google Scholar 

  • Şimşek Ş (2003) Hydrogeological and isotopic survey of geothermal fields in the Büyük Menderes graben, Turkey. Geothermics 32:669–678

    Article  Google Scholar 

  • Şimşek S, Günay G, Elhatip H, Ekmekçi M (2000) Environmental protection of geothermal waters and travertines at Pamukkale, Turkey. Geothermics 29:557–572

    Article  Google Scholar 

  • Uysal T, Feng Y, Zhao J, Altunel E, Weatherley D, Karabacak V, Cengiz O, Golding SD, Lawrence MG, Collerson KD (2007) U-series dating and geochemical tracingof late Quaternary travertines in co-seismic fissures. Earth Planet Sci Lett 257:450–462

    Article  Google Scholar 

  • Von Eynatten H, Pawlowsky-Glahn V, Egozcue JJ (2002) Understanding perturbation on the simplex: a simple method to better visualize and interpret compositional data in ternary diagrams. Math Geol 34(3):249–257

    Article  Google Scholar 

  • Yoshimura K, Liu Z, Cao J, Yuan D, Inokura Y, Noto M (2004) Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China. Chem Geol 205:141–153

    Article  Google Scholar 

  • Zedef V, Russell MJ, Fallick AE, Hall AJ (2000) Genesis of vein stockwork and sedimentary magnesite and hydromagnesite deposits in the ultramafic terranes of southwestern Turkey: a stable isotope study. Econ Geol 95(2):429–445

    Article  Google Scholar 

  • Zeraatkar K, Rahimi B (2012) Survey of Sangbast-Shandiz fault zone growth and geomorphological results. J Geogr Reg Dev 10(19):196–214 (In Persian)

    Google Scholar 

  • Zhang CL, Fouke BW, Bonheyo G, Peacock A, White DC, Huang Y, Romanek CS (2004) Lipid biomarkers and carbon-isotopes of modern travertine deposits (Yellowstone National Park, USA): implications for biogeochemical dynamics in hot-spring systems. Geochim Cosmochim Acta 68:3157–3169

    Article  Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for technical suggestions on data interpretations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mohammadzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, H., Mansouri Daneshvar, M.R. A comparison of hydro-geochemistry and stable isotope composition of travertine-depositing springs, Garab in NE Iran and Pamukkale in SW Turkey. Carbonates Evaporites 35, 23 (2020). https://doi.org/10.1007/s13146-020-00566-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00566-9

Keywords

Navigation