Skip to main content
Log in

Facies analysis and depositional setting of the upper pliocene Akchagyl Formation in southeastern Caspian Basin, NE Iran

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Pliocene deposits of the Cheleken and Akchagyl Formations constitute the most important hydrocarbon reservoirs in the Caspian Basin of Iran and other adjacent countries. In this study, facies characteristics and depositional setting of these sequences were examined using detailed field observations, petrographical studies, wireline-log and 2D seismic interpretations. Three outcrop sections were measured as the oldest and thickest Paleogene–Neogene units in the southeastern part of the Caspian Sea. Based on macroscopic and microscopic investigations, eleven sedimentary facies were identified in the studied sequence. These facies indicate deposition in alluvial fan, mud-flat, foreshore, shoreface and offshore of a wave-dominated lacustrine environment. The Akchagyl Formation is mainly composed of foreshore and shoreface facies with low gamma-ray values, which grades into offshore facies towards southwestern parts of the basin. The presence of marine biota such as Globigerinoides fistulosus, Ammonia becccarii, Pullenia praecursor, Cardium dombra and nanoplanktons (Discoaster brouweri and Discoaster pentaradiatus) demonstrate that this lacustrine setting was periodically connected to the global oceans, particularly in the Late Pliocene–Pleistocene. The stratigraphic correlation of the studied sections shows significant changes in lithology, facies and thickness of the Pliocene deposits. These changes were controlled by tectonic subsidence and clastic sediment supply during the Early-to-Middle Pliocene along with sea-level fluctuation as a consequence of the Akchagylian transgression episode in the Late Pliocene. Lateral changes in the geological parameters of the Akchagyl deposits indicate a more stable condition within the most part of the study area, especially towards the South Caspian Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Jackson et al. (2002)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdullayev NR, Gregory WR, Andrew PB (2010) Regional controls on lacustrine sandstone reservoirs: the Pliocene of the South Caspian Basin. In: Baganz OW, Bartov Y, Bohacs K, Nummendal D (eds.) Lacustrine sandstone reservoirs and hydrocarbon systems: AAPG Memoir, vol 95, pp 1–28

  • Abdullayev NA, Kadirov F, Guliyev IS (2015) Subsidence history and basin-fill evolution in the South Caspian Basin from geophysical mapping, flexural backstripping, forward lithospheric modelling and gravity modelling. Geol Soc Lond Spec Publ 427:175–196. https://doi.org/10.1144/SP427.5

    Article  Google Scholar 

  • Aghanabati A (2004) Geology of Iran. Geological Survey of Iran Publications, Tehran, p 582

    Google Scholar 

  • Ali-zade AA, Guliyev IS, Ateava EZ (1995) Neogene sratigraphy and sedimentology in eastern-Azarbaijan observation and surface implications. In: AAPG Bulletin, pp 79 (CONF-950995-)

  • Allen MB, Jones S, Ismail-Zadeh A, Simmons M, Anderson L (2002) Onset of subduction as the cause of rapid Pliocene-Quaternary subsidence in the South Caspian Basin. Geology 30(9):775–778

    Article  Google Scholar 

  • Allen MB, Vincent SJ, Alsop GI, Ismail-zadeh A, Flecker R (2003) Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone. Tectonophysics 366:223–239

    Article  Google Scholar 

  • Bohacs KM, Carroll AR, Neal JE, Mankiewicz PJ (2000) Lake-basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework. Lake basins through space and time. AAPG Stud Geol 46:3–34

    Google Scholar 

  • Brunet MF, Korotaev MV, Ershov AV, Nikishin AM (2003) The South Caspian Basin: a review of its evolution from subsidence modelling. Sed Geol 156:119–148

    Article  Google Scholar 

  • Cant DJ (1992) Part I subsurface facies analysis. In: Facies models-response to sea level change, pp 27–46

  • Clifton HE (2007) A reexamination of facies models for clastic shorelines. Facies Models Revisit 84:293–337

    Google Scholar 

  • Degens ET, Paluska A (1979) Tectonic and climatic pulses recorded in Quaternary sediments of the Caspian-Black Sea region. Sediment Geol 23:149–163

    Article  Google Scholar 

  • Dickson JAD (1965) A modified staining technique for carbonates in thin section. Nature 205:587

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Classification of carbonate rocks. American Association of Petroleum Geologists Memoirs, vol 1, pp 108–121

  • Ehsani M (2006) Lithofacies and biofacies of the Akchagyl stratigraphic sequence in Northeast of Gonbad-e Kavous, M.Sc. Thesis (in persian). Geological Survey and Mineral Exploration of Iran, Tehran, p 91

  • Ettehad K, Taati F (2017) Introduce akchagyl formation as cap rock for south caspian basin, 3rd national congress “Sedimentological Society of Iran”. National Iranian Oil Company Exploration Directorate (NIOCEXP), Tehran, p 6

  • Faridi Z (1964) Osracoda in the Plio-Pleistocene sediments of Gorgan-Mazandran (northern Iran). Bull Iran Petrol Inst 14:532–535

    Google Scholar 

  • Flügel E (2010) Microfacies of carbonate rocks: analysis, interpretation and application, 2nd edn. Springer, Berlin, p 984

    Book  Google Scholar 

  • Green T, Abdullayev N, Hossack J, Riley G, Roberts A (2009) Sedimentation and subsidence in the south Caspian Basin. Azerbaijan Geol Soc Lond Spec Publ 312:241–260

    Article  Google Scholar 

  • Hinds DJ, Aliyeva E, Allen MB, Davies CE, Kroonenberg SB, Simmons MD, Vincent SJ (2004) Sedimentation in a discharge dominated fluvial-lacustrine system: the Neogene Productive Series of the South Caspian Basin, Azerbaijan. Mar Petrol Geol 21:613–638. https://doi.org/10.1016/j.marpetgeo.2004.01.009

    Article  Google Scholar 

  • Jackson J, Priestly K, Allen M, Berberian M (2002) Active tectonics of the south Caspian Basin. Geophys J Int 148(2):214–245

    Google Scholar 

  • Jones RW, Simmons MD (1996) A review of the stratigraphy of Eastern Paratethys (Oligocene-Holocene). Bull Nat Hist Mus Geol Ser 52:25–50

    Google Scholar 

  • Kadirov F, Mammadov S, Reilinger R, McClusky S (2008) Some new data on modern tectonic deformation and active faulting in Azerbaijan (according to Global Positioning System measurements). Azerbaijan Natl Acad Sci Proc Sci Earth 1:82–88

    Google Scholar 

  • Khalilov EN, Mekhtiyev SF, Khain VY (1987) Some geophysical data confirming the collisional origin of the Greater Caucasus. Geotectonics 21(2):132–136

    Google Scholar 

  • Knapp CC, Knapp JH, Connor JA (2004) Crustal-scale structure of the South Caspian Basin revealed by deep seismic reflection profiling. Mar Petrol Geol 21(8):1073–1081

    Article  Google Scholar 

  • Maghfuri Moghadam I (2013) Stratigraphy of neogene deposits in northern Iran. Middle-East J Sci Res 15(6):846–852. https://doi.org/10.5829/idosi.mejsr.2013.15.6.2871

    Article  Google Scholar 

  • Marchetti L, Forte G, Bernardi M, Wappler T, Hartkopf-Fröder CH, Krainer K, Kustatscher E (2015) Reconstruction of a late Cisuralian (Early Permian) floodplain lake environment: palaeontology and sedimentology of the Tregiovo Basin (Trentino-Alto Adige, Northern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 440:180–200

    Article  Google Scholar 

  • Miall AD (2000) Principles of sedimemary basin analysis. Springer, Berlin, pp 141–248

    Book  Google Scholar 

  • Miall AD (2013) The geology of fluvial deposits: sedimentary facies, basin analysis, and petroleum geology. Springer, Berlin

    Google Scholar 

  • Nichols G (2009) Sedimentolgy and Stratigraphy, 2nd edn. Wiley-Blackwell, p 432

  • Ovsyuchenko AN, Korzhenkov AM, Larkov AS, Marahanov AV, Rogozhin EA (2017) New findings on the sources of strong earthquakes in Kerch Peninsula based on paleoseismological data. Dokl Earth Sci 472(1):53–56

    Article  Google Scholar 

  • Popov SV, Rozanov AY, Rögl F, Steininger FF, Shcherba IG, Kovac M (2004) Lithological-paleogeographic maps of Paratethys. CFS Courier Forschungsinstitut Senckenberg 250:1–46

    Google Scholar 

  • Popov SV, Shcherba IG, Ilyina LB, Nevesskaya LA, Paramonova NP, Khondkarian SO, Magyar I (2006) Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 238:91–106

    Article  Google Scholar 

  • Priestley K, Baker C, Jackson J (1994) Implications of earthquake focal mechanism data for the active tectonics of the South Caspian Basin and surrounding regions. Geophys J Int 118:111–141

    Article  Google Scholar 

  • Purser BH (1973) The Persian Gulf. Holocene carbonate sedimentation and diagenesis. Springer, Berlin, p 471

    Google Scholar 

  • Reading HG (1996) Sedimentary environments, processes, facies, and stratigraphy, 3rd edn. Blackwell Science, Oxford, p 688

    Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov S, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111(B05411):26. https://doi.org/10.1029/2005jb004051

    Article  Google Scholar 

  • Reinson GE (1992) Transgressive barrier island and estuarine systems. In: Facies models response to sea level change. Geological Association of Canada, St Johns, pp 179–194

  • Reynolds AD, Simmons MD, Bowman MB, Henton J, Brayshaw AC, Ali-Zade AA, Guliyev IS, Suleymanova SF, Ateava EZ, Mamedova DN, Koshkarly RO (1998) Implications of outcrop geology for reservoirs in the Neogene Productive Series: Apsheron Peninsula. Azerbaijan. AAPG Bull 82(1):25–49

    Google Scholar 

  • Robert AMM, Letouzey J, Kavoosi MA, Sherkati S, Müller C, Vergés J, Aghababaei A (2014) Structural evolution of the Kopet Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Mar Petrol Geol 57:68–87

    Article  Google Scholar 

  • Rögl F (1999) Mediterranean and paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol Carpath 50(4):339–349

    Google Scholar 

  • Rögl F, Steininger FF (1983) Vom Zerfall der Tethys zu Mediterran und Paratethys: Annalen des Naturhistorischen Museums in Wien, ser. A 135–163

  • Scoffin TP, Stoddard DR (1983) Beach rock and intertidal cements. In: Chemical sediments and geomorphology: precipitates and residua in the near-surface environment. Academic Press, London, pp 401–25

  • Siddiqui NA, El-Ghali MA, binAbdRahman AH, Mijinyawa A, Ben-Awuah J (2013) Depositional environment of shallow-marine sandstones from outcrop gamma-ray logs, Belait Formation, Meragang Beach, Brunei Darussalam. Res J Environ Earth Sci 5(6):305–324

    Article  Google Scholar 

  • Smith-Rouch LS (2006) Oligocene-Miocene Maykop/Diatom Total Petroleum System of the South Caspian Basin Province, Azerbaijan, Iran, and Turkmenistan: U.S. Geol Surv Bull 2201:1–27

    Google Scholar 

  • Tavarnelli E, Holdsworth RE, Clegg P, Jones RR, McCaffrey KJ (2004) The anatomy and evolution of a transpressional imbricate zone, Southern Uplands, Scotland. J Struct Geol 26(8):1341–1346

    Article  Google Scholar 

  • Tucker ME (2001) Sedimentary petrology: an introduction to the origin of sedimentary rocks, 3rd edn. Blackwell Science, Oxford, p 262

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publication, Oxford, p 482

    Book  Google Scholar 

  • van Back CGC, Vasiliev I, Stoica M, Kuiper KF, Forte AM, Aliyeva E, Krijgsman W (2013) A magnetostratigraphic time frame for Plio-Pleistocene transgressions in the South Caspian Basin. Azerbaijan Glob Planet Change 103:119–134

    Article  Google Scholar 

  • van Buchem FSP, Allan TL, Laursen GV, Lotfpour M, Moallemi A, Monibi S, Motiei H, Pickard NAH, Tahmasbi AR, Vedrenne V, Vincent B (2010) Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations) SW Iran. Geol Soc Lond Spec Publ 329:219–263

    Article  Google Scholar 

  • Vatan A, Yassini I (1969) Les grandes lignes de la géologie de l’Elbourz central dans la région de Téhéran et la plaine Caspienne. Revue de l’Institut Français du Pétrole 24:841–878

    Google Scholar 

  • Wilson AO (1975) Depositional and diagenetic facies in the Jurassic Arab-C and -D Reservoirs, Qatif Field, Saudi Arabia. Carbonate Pet Reserv, New York, pp 319–340

    Google Scholar 

  • Yassini I (1981) Paratethys Neogene deposits from the southern Caspian Sea, north Iran. Bull Iran Inst 83:1–23

    Google Scholar 

  • Zonenshain LP, Le Pichon X (1986) Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back arc basins. Tectonophysics 123:181–211. https://doi.org/10.1016/0040-1951(86)90197-6

    Article  Google Scholar 

  • Zubakov VA, Borzenkova II (1990) Global palaeoclimate of the late cenezoic. Dev Palaeontol Stratigr 12:456

    Google Scholar 

Download references

Acknowledgements

The Khazar Exploration and Production Company (KEPCO) and Research Institute of Petroleum Industry (RIPI) provided data and financial support for the field operations, for which the authors are grateful. Some constructive suggestions by Prof. M. E. Tucker are highly appreciated. Our great thanks to the editor and anonymous reviewers for their guidance and precise comments that improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Beiranvand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, B., Beiranvand, B., Moussavi-Harami, R. et al. Facies analysis and depositional setting of the upper pliocene Akchagyl Formation in southeastern Caspian Basin, NE Iran. Carbonates Evaporites 35, 8 (2020). https://doi.org/10.1007/s13146-019-00537-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-019-00537-9

Keywords

Navigation