Skip to main content
Log in

Spatial and temporal variations in carbon dioxide (CO2) concentrations in selected soils of the Moravian Karst (Czech Republic)

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The evolution of CO2 concentrations in selected soils of the Moravian Karst (Czech Republic) was studied during a 1-year period from August 2008 to July 2009. CO2 concentrations directly measured in air of the soils of coniferous and deciduous forests reached up to 0.5 vol%. Substantially, higher CO2 concentrations, over 1 vol%, were found in thicker sinkhole soils under grassy vegetation. CO2 concentrations showed strong seasonality with maxima in summer and minima in winter at all sites. On the basis of temperature dependence, \( \ln c_{{{\text{CO}}_{ 2} }} = b_{0} - b_{1} /T \) (where \(c_{{{\text{CO}}_{ 2} }}\) is CO2 concentration in mol/L, T is temperatures in Kelvin, and b 1, b 2 are constants); all CO2 concentrations were normalized to 10 °C. These concentrations did not correlate with rainfall or soil profile depth. The remaining maxima in the time series of CO2 concentrations (a sharp peak especially in July) might be the result of increased plant respiration during enhanced photosynthesis activity during the early-summer stage of the green period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson TC (1977) Carbon dioxide in the atmosphere of the unsaturated zone: an important control of groundwater hardness in limestones. J Hydrol 35:111–123

    Article  Google Scholar 

  • Baldocchi D, Tang J, Xu L (2006) How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna. J Geophys Res Biogeosci 111(2):G02008

    Google Scholar 

  • Bashan A, Bartch R, Kantelhardt JW, Havlin S (2008) Comparison of detrending methods for fluctuation analysis. Phys A 387:5080–5090

    Article  Google Scholar 

  • Benavente J, Vadillo I, Carrasco F, Soler A, Lián C, Moral F (2010) Air carbon dioxide contents in the vadose zone of a Mediterranean karst. Vadose Zone J 9:126–136

    Article  Google Scholar 

  • Blecha M, Faimon J (2014) Karst soils: dependence of CO2 concentrations on pore dimension. Acta Carsol (in press)

  • Bruthans J, Zeman O (2003) Factors controlling exokarst morphology and sediment transport through caves; comparison of carbonate and salt karst. Acta Carsol 32(1):83–99

    Google Scholar 

  • Dreybrodt W (1988) Processes in karst systems. In: Physics, chemistry and geology (Springer series in physical environment, No 4). Springer, Berlin, p 288

  • Faimon J, Ličbinská M (2010) Carbon dioxide in the soils and adjacent caves of the Moravian Karst. Acta Carsol 39:463–475

    Google Scholar 

  • Faimon J, Štelcl J, Schwarzová M, Zajíček P, Zimák J (2006) Recentní krasové procesy: destrukce speleotém (in Czech). Investigation report GAČR 205/03/1128:1–47

    Google Scholar 

  • Faimon J, Ličbinská M, Zajíček P (2012a) Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian Karst region of the Czech Republic. Int J Speleol 41:17–28

    Article  Google Scholar 

  • Faimon J, Ličbinská M, Zajíček P, Sracek O (2012b) Partial pressures of CO2 in epikarstic zone deduced from hydrogeochemistry of permanent drips, the Moravian Karst, Czech Republic. Acta Carsol 42:47–57

    Google Scholar 

  • Fairchild IJ, Borsato A, Tooth AF, Frisia S, Hawkesworth CJ, Huang Y, McDermott F, Spiro B (2000) Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chem Geol 166:255–269

    Article  Google Scholar 

  • Fairchild IJ, Smith CL, Baker A, Fuller L, Spötl C, Mattey D, McDermott F, EIMF (2006) Modification and preservation of environmental signals in speleothems. Earth-Sci Rev 75:105–153

    Article  Google Scholar 

  • Fierer N, Chadwick OA, Trumbore SE (2005) Production of CO2 in soil profiles of a California annual grassland. Ecosystems 8:412–429

    Article  Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. John Wiley & Sons, Chichester, p 576

    Book  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  Google Scholar 

  • Hashimoto S, Tanaka N, Kume N, Yoshifuji N, Hotta N, Tanaka K, Suzuki M (2007) Seasonality of vertically partitioned soil CO2 production in temperate and tropical forest. J Forest Res 12:209–221

    Article  Google Scholar 

  • Jassal R, Black A, Novak M, Morgenstern K, Nesic Z, Gaumont-Guay D (2005) Relationship between soil CO2 concetrations and forest-floor CO2 effluxes. Agr Forest Meteorol 130:176–192

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:436–443

    Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448

    Article  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol 16:3386–3406

    Article  Google Scholar 

  • Kuzyakov Y, Larionova AA (2005) Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J Plant Nutr Soil Sc 168:503–520

    Article  Google Scholar 

  • Li T, Wang S, Zheng L (2002) Comparative study on CO2 sources in soil developed on carbonate rock and non-carbonate rock in Central Guizhou. Sci China (Series D) 45:673–679

    Article  Google Scholar 

  • Liu Q, Edwards NT, Post WM, Gu L, Ledford J, Lenhart S (2006) Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest. Glob Chang Biol 12:2136–2145

    Article  Google Scholar 

  • McDermott F (2004) Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat Sci Rev 23:901–918

    Article  Google Scholar 

  • Müller P et al (2000) Geologie Brna a okolí (in Czech). Český geologický ústav, Praha, pp 32–74

    Google Scholar 

  • Musil R et al (1993) Moravský kras–labyrinty poznání (in Czech). Adamov, GEO program, p 336

    Google Scholar 

  • Nakadai T, Yokozawa M, Ikeda H, Koizumi H (2002) Diurnal changes of carbon dioxide flux from bare soil in a agricultural field in Japan. Appl Soil Ecol 19:161–171

    Article  Google Scholar 

  • Němeček J et al (1967) Komplexní průzkum zemědělských půd ČSSR. VÚMOP Praha, Brno, Průvodní zpráva okresu Blansko (in Czech), p 219

    Google Scholar 

  • Niven EB, Deutsch CV (2012) Calculating a robust correlation coefficient and quantifying its uncertainty. Comput Geosci UK 40:1–9

    Article  Google Scholar 

  • Pavelka M, Acosta M, Marek MV, Kutch W, Janous D (2007) Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant Soil 292:171–179

    Article  Google Scholar 

  • Peyraube N, Lastennet R, Denis A, Malaurent P (2013) Estimation of epikarst air PCO2 using measurements of water δ13CTDIC, cave air PCO2 and δ13CCO2. Geochim Cosmochim Acta 118:1–17

    Article  Google Scholar 

  • Quitt E (1971) Klimatické oblasti Československa (in Czech). Studia geographica 16, GÚ ČSAV, Academia, Brno, pp 1–73

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    Article  Google Scholar 

  • Rees RM, Bingham IJ, Baddeley JA, Watson CA (2005) The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 128:130–154

    Article  Google Scholar 

  • Risk D, Kellman L, Beltrami H (2002) Carbon dioxide in soil profiles: production and temperature dependence. Geophys Res Lett 29(6):1087

    Article  Google Scholar 

  • Sanchez-Cañete EP, Serrano-Ortiz P, Kowalski AS, Oyonarte C, Domingo F (2011) Subterranean CO2 ventilation and its role in the net ecosystem carbon balance of a karstic shrubland. Geophys Res Lett 38:L09802

    Article  Google Scholar 

  • Sarbu SM, Lascu C (1997) Condesation corrosion in Movile cave, Romania. J Cave Karst Stud 59:99–102

    Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    Article  Google Scholar 

  • Spötl C, Fairchild IJ, Tooth AF (2005) Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochim Cosmochim Acta 69:2451–2468

    Article  Google Scholar 

  • StatSoft, Inc. (2013) Electronic statistics textbook. Tulsa, http://www.statsoft.com/textbook/

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York, p 1040

  • Tang T, Misson L, Gershenson A, Cheng W, Goldstein AH (2005) Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agr Forest Meteorol 132:212–227

    Article  Google Scholar 

  • Van Vuuren MMI, Robinson D, Scrimgeour ChM, Raven JA, Fitter AH (2000) Decomposition of 13C-labelled wheat root systems following growth at different CO2 concentrations. Soil Biol Biochem 32:403–413

    Article  Google Scholar 

  • Yoshimura K, Nakao S, Noto M, Inokura Y, Urata M, Chen P, Lin PW (2001) Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan—chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid. Chem Geol 177:415–430

    Article  Google Scholar 

  • Zhou Q, Chan ChW, Tontiwachiwuthikul P, Idem R, Gelowitz D (2009) A statistical analysis of the carbon dioxide capture process. Int J Greenh Gas Con 3:535–544

    Article  Google Scholar 

  • Zimmermann M, Meir P, Bird M, Malhi Y, Ccahuana A (2009) Litter contribution to diurnal and annual soil respiration in a tropical montane cloud forest. Soil Biol Biochem 41:1338–1340

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by funding from Masaryk University. The authors wish to thank Christopher S. Swezey who helped to substantially improve the manuscript. Thanks also belong to the Czech Hydrometeorological Institute for providing meteorological data from the meteorological station in Protivanov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Faimon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blecha, M., Faimon, J. Spatial and temporal variations in carbon dioxide (CO2) concentrations in selected soils of the Moravian Karst (Czech Republic). Carbonates Evaporites 29, 395–408 (2014). https://doi.org/10.1007/s13146-014-0220-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-014-0220-7

Keywords

Navigation