Skip to main content
Log in

The Global/Regional Integrated Model System (GRIMs): an Update and Seasonal Evaluation

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The Global/Regional Integrated Model system (GRIMs) is upgraded to version 4.0, with the advancement of the moisture advection scheme and physics package, focusing on the global model program (GMP) for seasonal simulation and climate studies. Compared to the original version 3.1, which was frozen in 2013, the new version shows no Gibbs phenomenon in the moisture and tracer fields by implementing the semi-Lagrangian advection scheme with a better computational efficiency at higher resolution. The performance of the seasonal ensemble simulation (June–August 2017 and December 2016–February 2017) is significantly improved by new physics and ancillary data. The advancement is largest in the stratosphere, where the cold bias is dramatically reduced and the wind bias of the polar jets is alleviated, especially for the winter hemisphere. Noticeable improvements are also found in tropospheric zonal mean circulation, eddy transport, precipitation, and surface air temperature. This allows GRIMs version 4.0 to be used not only for long-term climate simulations, but also for subseasonal-to-seasonal climate prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler, R.F., et al.: The Global Precipitation Climatology Project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation. Atmosphere 9, 138 (2018)

    Article  Google Scholar 

  • Bae, S.Y., Park, R.S.: Consistency between the cloud and radiation processes in a numerical forecasting model. Meteorol. Atmos. Phys. 131, 1429–1436 (2019)

    Article  Google Scholar 

  • Barlage, M., Zeng, X., Wei, H., Mitchell, K.E.: A global 0.05° maximum albedo dataset of snow-covered land based on MODIS observations. Geophys. Res. Lett. 32, L17405 (2005)

    Article  Google Scholar 

  • Blossey, P.N., Durran, D.R.: Selective monotonicity preservation in scalar advection. J. Comput. Phys. 227, 5160–5183 (2008)

    Article  Google Scholar 

  • Briegleb, B.P., Minnis, P., Ramanathan, V., Harrison, E.: Comparison of regional clear-sky albedos inferred from satellite observations and model computations. J. Climate Appl. Meteorol. 25, 214–226 (1986)

    Article  Google Scholar 

  • Butchart, N., et al.: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geosci. Model. Dev. 11, 1009–1032 (2018)

    Article  Google Scholar 

  • Byun, Y.-H., Hong, S.-Y.: Improvements in the Subgrid-scale representation of moist convection in a cumulus parameterization scheme: the single-column test and its impact on seasonal prediction. Mon. Wea. Rev. 135, 2135–2154 (2007)

    Article  Google Scholar 

  • Chang, E.C., Yoshimura, K.: A semi-Lagrangian advection scheme for radioactive tracers in the NCEP Regional Spectral Model (RSM). Geosci. Model. Dev. 8, 3247–3255 (2015)

    Article  Google Scholar 

  • Charnock, H.: Wind stress on a water surface. Q. J. R. Meteorol. Soc. 81, 639–640 (1955)

    Article  Google Scholar 

  • Choi, H.-J., Hong, S.-Y.: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Research: Atmos. 120, 12445–12457 (2015)

    Article  Google Scholar 

  • Chou, M.-D., Suarez, M.J.: A solar radiation parameterization for atmospheric studies. NASA/TM-1999-104606, 38 pp (1999)

  • Chou, M.-D., Lee, K.-T.: A parameterization of the effective layer emission for infrared radiation calculations. J. Atmos. Sci. 62, 531–541 (2005)

    Article  Google Scholar 

  • Chou, M.-D., Lee, K.-T., Tsay, S.-C., Fu, Q.: Parameterization for cloud longwave scattering for use in atmospheric models. J. Clim. 12, 159–169 (1999)

    Article  Google Scholar 

  • Chun, H.-Y., Baik, J.-J.: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci. 55, 3299–3310 (1998)

    Article  Google Scholar 

  • Colella, P., Woodward, P.R.: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984)

    Article  Google Scholar 

  • Colella, P., Sekora, M.D.: A limiter for PPM that preserves accuracy at smooth extrema. J. Comput. Phys. 227, 7069–7076 (2008)

    Article  Google Scholar 

  • Edmon, H.J., Hoskins, B.J., McIntyre, M.E.: Eliassen-palm cross sections for the troposphere. J. Atmos. Sci. 37, 2600–2616 (1980)

    Article  Google Scholar 

  • Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., Tarpley, J.D.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Phys. Res. 108, 8851 (2003)

    Article  Google Scholar 

  • Gutman, G., Ignatov, A.: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 19, 1533–1543 (1998)

    Article  Google Scholar 

  • Han, J.-Y., Hong, S.-Y., Kwon, Y.C.: The performance of a revised Simplified Arakawa–Schubert (SAS) convection scheme in the medium-range forecasts of the Korean Integrated Model (KIM). Weather Forecast. 35, 1113–1128 (2020)

    Article  Google Scholar 

  • Han, J.-Y., Hong, S.-Y., Lim, K.-S.S., Han, J.: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Weather Rev. 144, 2125–2135 (2016)

    Article  Google Scholar 

  • Hong, S.-Y.: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q. J. R. Meteorol. Soc. 136, 1481–1496 (2010)

    Article  Google Scholar 

  • Hong, S.-Y., Jang, J.: Impacts of shallow convection processes on a simulated boreal summer climatology in a global atmospheric model. Asia-Pacific J. Atmos. Sci. 54, 361–370 (2018)

    Article  Google Scholar 

  • Hong, S.-Y., Juang, H.-M.H., Zhao, Q.: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Weather Rev. 126, 2621–2639 (1998)

    Article  Google Scholar 

  • Hong, S.-Y., Dudhia, J., Chen, S.-H.: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 132, 103–120 (2004)

    Article  Google Scholar 

  • Hong, S.-Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006)

    Article  Google Scholar 

  • Hong, S.-Y., Choi, J., Chang, E.-C., Park, H., Kim, Y.-J.: Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Weather Forecast. 23, 523–531 (2008)

    Article  Google Scholar 

  • Hong, S.-Y., et al.: The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pacific J. Atmos. Sci. 54, 267–292 (2018)

    Article  Google Scholar 

  • Hong, S.-Y., et al.: The Global/Regional Integrated Model system (GRIMs). Asia-Pacific J. Atmos. Sci. 49, 219–243 (2013)

    Article  Google Scholar 

  • Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., Collins, W.D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res.: Atmos. 113, D13103 (2008)

    Article  Google Scholar 

  • Jeon, J.-H., Hong, S.-Y., Chun, H.-Y., Song, I.-S.: Test of a convectively forced gravity wave drag parameterization in a general circulation model. Asia-Pacific J. Atmos. Sci. 46, 1–10 (2010)

    Article  Google Scholar 

  • Jeong, Y.-C., Yeh, S.-W., Lee, S., Park, R.J.: A global/regional integrated model system-chemistry climate model: 1. Simulation characteristics. Earth Space Sci. 6, 2016–2030 (2019)

    Article  Google Scholar 

  • Juang, H.-M.H.: Semi-Lagrangian advection without iteration. In: Proceedings of the Conference on Weather Analysis and Forecasting, Longtan, Taoyan, Taiwan, Central Weather Bureau, 227 (2007)

  • Juang, H.-M.H., Hong, S.-Y.: Forward semi-lagrangian advection with mass conservation and positive definiteness for falling hydrometeors. Mon. Weather Rev. 138, 1778–1791 (2010)

    Article  Google Scholar 

  • Kent, J., Ullrich, P.A., Jablonowski, C.: Dynamical core model intercomparison project: Tracer transport test cases. Q. J. R. Meteorol. Soc. 140, 1279–1293 (2014)

    Article  Google Scholar 

  • Kim, E.-J., Hong, S.-Y.: Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J. Phys. Res. 115, D19118 (2010)

    Article  Google Scholar 

  • Kim, Y.-J., Arakawa, A.: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci. 52, 1875–1902 (1995)

    Article  Google Scholar 

  • Koo, M.-S., Hong, S.-Y.: Double fourier series dynamical core with hybrid sigma-pressure vertical coordinate. Tellus A: Dyn. 65, 19851 (2013)

    Article  Google Scholar 

  • Koo, M.-S., Choi, H.-J., Han, J.-Y.: A parameterization of turbulent-scale and mesoscale orographic drag in a global atmospheric model. J. Geophys. Res.: Atmos. 123, 8400–8417 (2018)

    Article  Google Scholar 

  • Lauritzen, P.H., Jablonowski, C., Taylor, M.A., Nair, R.D.: Rotated versions of the jablonowski steady-state and baroclinic wave test cases: a dynamical core intercomparison. J. Adv. Model. Earth Syst. 2, 15 (2010)

    Article  Google Scholar 

  • Lee, S., Park, R.J., Hong, S.Y., et al.: A New Chemistry-climate model GRIMs-CCM: model evaluation of interactive chemistry-meteorology simulations. Asia-Pac J. Atmos. Sci. (2022). https://doi.org/10.1007/s13143-022-00281-6

  • Long, P.J.: An general unified similarity theory for the calculation of turbulent fluxes in the numerical weather prediction models for unstable condition. Office Note 302, p. 330. U.S. Department of Commerce, National oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center (1984)

  • Long, P.J.: An economical and compatible scheme for parameterizing the stabl surface layer in the medium-range forecast model, Office Note 321, p. 324. U.S. Department of Commerce, National oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center (1986)

  • Lu, B., Zhong, J., Wang, W., Tang, S., Zheng, Z.: Influence of near real-time green vegetation fraction data on numerical weather prediction by WRF over North China. J. Meteorol. Res. 35, 505–520 (2021)

    Article  Google Scholar 

  • Mitchell, K., et al.: The community noah Land-Surface Model (LSM): User’s Guide Public Release Version 2.7.1. NCEP (2005)

  • Mocko, D.M., Cotton, W.R.: Evaluation of fractional cloudiness parameterizations for use in a mesoscale model. J. Atmos. Sci. 52, 2884–2901 (1995)

    Article  Google Scholar 

  • Orszag, S.A.: Transform method for the calculation of vector-coupled sums: application to the spectral form of the vorticity equation. J. Atmos. Sci. 27, 890–895 (1970)

    Article  Google Scholar 

  • Park, H., Hong, S.-Y.: An Evaluation of a mass-flux cumulus parameterization scheme in the KMA global forecast system. J. Meteor. Soc. Jpn. 85, 151–169 (2007)

    Article  Google Scholar 

  • Park, R.-S., Chae, J.-H., Hong, S.-Y.: A revised prognostic cloud fraction scheme in a global forecasting system. Mon. Weather Rev. 144, 1219–1229 (2016)

    Article  Google Scholar 

  • Schär, C., Leuenberger, D., Fuhrer, O., Lüthi, D., Girard, C.: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Weather Rev. 130, 2459–2480 (2002)

    Article  Google Scholar 

  • Staniforth, A., Côté, J.: Semi-lagrangian integration schemes for atmospheric models—A review. Mon. Weather Rev. 119, 2206–2223 (1991)

    Article  Google Scholar 

  • Sundqvist, H., Berge, E., Kristjánsson, J.E.: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Weather Rev. 117, 1641–1657 (1989)

    Article  Google Scholar 

  • Taylor, J.P., Edwards, J.M., Glew, M.D., Hignett, P., Slingo, A.: Studies with a flexible new radiation code. II: Comparisons with aircraft short-wave observations. Q. J. R. Meteorol. Soc. 122, 839–861 (1996)

    Article  Google Scholar 

  • Ullrich, P.A., Jablonowski, C., Kent, J., Lauritzen, P.H., Nair, R.D., Taylor, M.A.: Dynamical Core Model Intercomparison Project (DCMIP) test case document. NCAR Tech. Doc., pp 83 (2012). Available online at http://websites.umich.edu/~cjablono/DCMIP-2012_TestCaseDocument_v1.7.pdf

  • Williamson, D.L.: Semi-Lagrangian moisture transport in the NMC spectral model. Tellus A 42, 413–428 (1990)

    Article  Google Scholar 

  • Williamson, D.L.: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Jpn. 85B, 241–269 (2007)

    Article  Google Scholar 

  • Xu, K.-M., Randall, D.A.: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci. 53, 3084–3102 (1996)

    Article  Google Scholar 

  • Zeng, X., Wang, Z., Wang, A.: Surface skin temperature and the interplay between sensible and ground heat fluxes over arid regions. J. Hydrometeor 13, 1359–1370 (2012)

    Article  Google Scholar 

  • Zerroukat, M., Staniforth, A., Wood, N.: The monotonic Quartic Spline Method (QSM) for conservative transport problems. J. Comput. Phys. 229, 1150–1166 (2010)

    Article  Google Scholar 

  • Zhang, Y., Juang, H.-M.H.: A mass-conserving non-iteration-dimensional-split semi-Lagrangian advection scheme for limited-area modelling. Q. J. R. Meteorol. Soc. 138, 2118–2125 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through “Climate Change R&D Project for New Climate Regime”, funded by Korea Ministry of Environment (MOE) (2022003560004). Dr. Ji-Young Han and Ji-Young Oh implemented the KSAS scheme and provided CAMS-based climatological ozone data, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Woo Son.

Ethics declarations

Competing Interest

The authors declare no competing financial interests or personal relationship that influence the work reported in this paper.

Additional information

Responsible Editor: Daehyun Kim.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2.63 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, MS., Song, K., Kim, JE.E. et al. The Global/Regional Integrated Model System (GRIMs): an Update and Seasonal Evaluation. Asia-Pac J Atmos Sci 59, 113–132 (2023). https://doi.org/10.1007/s13143-022-00297-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-022-00297-y

Keywords

Navigation