Skip to main content
Log in

An investigation of reduced western disturbance activity over Northwest India in November - December 2015 compared to 2014 - A case study

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In November-December of 2015, Northwestern India received very low precipitation due to anomalously low Western Disturbances (WDs) activity. The resulting lack of sufficient precipitation and soil moisture hampered the growth of winter crops leading to significant agricultural losses. Relatively stable weather in the absence of precipitation and WDs contributed to extremely high air pollution in New Delhi and also significantly degraded the air quality in many cities of Northwestern India leading to severe health issues. Despite the fact that WDs play a very important role in India’s winter weather, limited research has been done to investigate the causes of their inter-annual variability. A case study using NCEP/NCAR Reanalysis, CMAP precipitation and NOAA Extended Reconstructed Sea Surface Temperature data is evaluated in this paper to better understand the atmospheric drivers of WDs in order to help fill the gap in knowledge. Results show that elevated Sea Surface Temperatures over the North Indian Ocean likely lead to atmospheric circulation anomalies that led to branching and weakening of the subtropical jet stream and weakening of vertical wind shear over Northwestern India. These conditions created an unfavorable environment for the propagation of WDs. However, there was an intensification of vertical wind shear over mid-latitude Eurasia along with increased storm activity. This weakened the Eurasian anticyclone resulting in warmer surface air temperatures over the midlatitudes that led to a redistribution of the meridional temperature gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnihotri, C. L., and M. S. V. Singh, 1982: Satellite study of western disturbances. Mausam, 33, 249–254.

    Google Scholar 

  • Alford, D., R. Armstrong, and A. Racoviteanu, 2010: Glacier retreat in the Nepal Himalaya: An assessment of the role of glaciers in the hydrologic regime of the Nepal Himalaya. A report to South Asia Sustainable Development (SASDN) Office, Environment and Water Resources Unit, The World Bank, Washington, DC.

    Google Scholar 

  • Chand, R., and C. Singh, 2015: Movements of western disturbance and associated cloud convection. J. Ind. Geophys. Union., 19, 62–70.

    Google Scholar 

  • Dhar, O. N., A. K. Kulkarni, and E. B. Sangam, 1984: Some aspects of winter and monsoon rainfall distribution over the Garhwal-Kumaon Himalayas—a brief appraisal. Himal. Res. Dev., 2, 10–19.

    Google Scholar 

  • Dimri, A. P., 2006: Surface and upper air fields during extreme winter precipitation over the western Himalayas. Pure Appl. Geophys., 163, 1679–1698, doi:10.1007/s00024-006-0092-4.

    Article  Google Scholar 

  • Hatwar, H. R., B. P. Yadav, and Y. V. Rama Rao, 2005: Prediction of western disturbances and associated weather over Western Himalayas. Curr. Sci. India, 88, 913–920.

    Google Scholar 

  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595–1612.

    Article  Google Scholar 

  • Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 1382–1385, doi:10.1126/science.1183188

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 1069–1090.

    Article  Google Scholar 

  • Kumar, N., B. P. Yadav, S. Gahlot, and M. Singh, 2015: Winter frequency of western disturbances and precipitation indices over Himachal Pradesh, India: 1977-2007. Atmósfera, 28, 63–70, doi:10.1016/S0187-6236(15)72160-0.

    Article  Google Scholar 

  • Kumar, V., and S. K. Jain, 2010: Trends in seasonal and annual rainfall and rainy days in Kashmir Valley in the last century. Quatern. Int., 212, 64–69, doi:10.1016/j.quaint.2009.08.006.

    Article  Google Scholar 

  • Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445–449, doi:10.1038/ngeo2438

    Article  Google Scholar 

  • Madhura, R. K., R. Krishnan, J. V. Revadekar, M. Mujumdar, and B. N. Goswami, 2015: Changes in western disturbances over the Western Himalayas in a warming environment. Climate Dyn., 44, 1157–1168, doi:10.1007/s00382-014-2166-9

    Article  Google Scholar 

  • Mooley, D. A., 1957: The role of western disturbances in the production of weather over India during different seasons. Indian J. Meteorol. Geophys., 8, 253–260.

    Google Scholar 

  • Nicholson, S. E., 1997: An analysis of the ENSO signal in the tropical Atlantic and western Indian Oceans. Int. J. Climatol., 17, 345–375, doi:10.1002/(SICI)1097-0088(19970330)17:4<345::AID-JOC127>3.0. CO;2-3.

    Article  Google Scholar 

  • Pisharoty, P. R., and B. N. Desai, 1956: Western disturbances and Indian Weather. Indian J. Meteorol. Geophys., 7, 333–338.

    Google Scholar 

  • Puranik, D. M., and R. N. Karekar, 2009: Western disturbances seen with AMSU-B and infrared sensors. J. Earth Syst. Sci., 118, 27–39, doi: 10.1007/s12040-009-0003-z.

    Article  Google Scholar 

  • Rangachary, N., and B. K. Bandyopadhyay, 1987: An analysis of the synoptic weather pattern associated with extensive avalanching in Western Himalaya. Int. Assoc. of Hydrol. Sci. Publ, 162, 311–316.

    Google Scholar 

  • Rao, Y. P., and V. Srinivasan, 1969: Forecasting Manual, Part III Discussion of typical synoptic weather situation: winter western disturbances and their associated features. India Meteorological Department, FMU Report No. III-1.

  • Rees, H. G., and D. N. Collins, 2006: Regional differences in response of flow in glacier-fed Himalayan Rivers to climatic warming. Hydrol. Process., 20, 2157–2169, doi:10.1002/hyp.6209

    Article  Google Scholar 

  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale Precipitation Patterns associated with El Niño Southern Oscillation. Mon. Wea. Rev., 115, 985–996.

    Google Scholar 

  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268–284.

    Article  Google Scholar 

  • Roxy, M. K., R. Kapoor, P. Terray, and S. Masson, 2014: The curious case of Indian ocean warming. J. Climate, 27, 8501–8509, doi:10.1175/JCLID-14-00471.1.

    Article  Google Scholar 

  • Shrestha, A. B., C. P. Wake, J. E. Dibb, and P. A. Mayewski, 2000: Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large-scale climatological parameters. Int. J. Climatol., 20, 317–327.

    Article  Google Scholar 

  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414–432.

    Article  Google Scholar 

  • Syed, F. S., F. Giorgi, J. S. Pal, and M. P. King, 2006: Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theor. Appl. Climatol., 86, 147–160, doi:10.1007/s00704-005-0217-1.

    Article  Google Scholar 

  • Wu, Z., J. Li, Z. Jiang, J. He, and X. Zhu, 2012: Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian Summer monsoon and ENSO. Int. J. Climatol., 32, 794–800, doi:10.1002/joc.2309

    Article  Google Scholar 

  • Yadav, R. K., J. H. Yoo, F. Kucharski, and M. A. Abid, 2010: Why is ENSO influencing northwest India winter precipitation in recent decades? J. Climate, 23, 1979–1993, doi:10.1175/2009JCLI3202.1.

    Article  Google Scholar 

  • Zhang, X., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948-2002. J. Climate, 17, 2300–2317, doi:10.1175/1520-0442(2004) 017<2300:CAIVOA>2.0.CO;2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumik Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, S., Bieniek, P.A. & Deoras, A. An investigation of reduced western disturbance activity over Northwest India in November - December 2015 compared to 2014 - A case study. Asia-Pacific J Atmos Sci 53, 75–83 (2017). https://doi.org/10.1007/s13143-017-0006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0006-7

Key words

Navigation