Skip to main content
Log in

Proposal for a heat balance model tailored to the Korean peninsula

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study proposes a model that estimates optimal expected temperature for thermal comfort at various levels of relative humidity, wind speed, mean radiation temperature, metabolic rate, and clothing insulation, while improving the variables of the mean radiation temperature. By including the results of numerical and observational data testing, the improved model considers mean radiant temperatures more comprehensively than the previous model. Changes in expected temperatures for thermal comfort at various mean radiation temperatures showed that the outdoor temperature must decrease as the length of outdoor exposure increases. The expected temperature for thermal comfort must be lower at higher metabolic rates. The expected temperature does not change as wind speed increases when the mean radiant temperature is low. However, as mean radiant temperature increases, the expected temperatures change depending on the wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali-Toudert, F., and H. Mayer, 2006: Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build Environ, 41, 94–108.

    Article  Google Scholar 

  • ASHRAE, 2001: ASHRAE Fundamentals Handbook 2001 (SI Edition). American Society of Heating, Refrigerating, and Air Conditioning Engineers, Atlanta, GA.

    Google Scholar 

  • ASHRAE, 2005: ASHRAE Handbook Fundamentals (SI Edition). American Society of Heating, Refrigerating, and Air Conditioning Engineer, Atlanta, GA.

    Google Scholar 

  • Auliciems, A., and S. V. Szokolay, 1997: Thermal comfort.University of Queensland, Brisbane, Australia.

    Google Scholar 

  • Bedford, T., and C. G. Warner, 1934: The Globe Thermometer in studies of heating and ventilation. J. Hyg-Cambridge, 34, 458–473.

    Article  Google Scholar 

  • Belding, H. S., 1970: The search for a universal heat stress index, In: Physiological and behavioral temperature regulation. Charles C Thomas, Springfield, 193–202.

    Google Scholar 

  • Brebner, D. F., D. M. Kerslake, and J. L. Waddell, 1956: The diffusion of water vapor through human skin. J. Physiol., 132, 225–231.

    Google Scholar 

  • Buskirk, E. R., 1960: Problems related to the caloric cost of living. B. New York Acad. Med., 26, 365.

    Google Scholar 

  • Cheng, V., E. Ng, C. Chan, and B. Givoni, 2012: Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study base in Hong Kong. Int. J. Biometeorol., 56, 43–56.

    Article  Google Scholar 

  • Choi, S. J., 2012: An Obervatory study for the Mitigation of Extreme heat Impact. M. S. Thesis. Gimhae, Inje University (Korean).

    Google Scholar 

  • Epstein, Y., and D. S. Moran, 2006: Thermal comfort and the heat stress indices. Ind. Health, 44, 388–398.

    Article  Google Scholar 

  • Fanger, P. O., 1967: Calculation of thermal comfort: Introduction of a basic comfort equation. ASHRAE Trans., 73, (II): III.4.1–III4.20.

    Google Scholar 

  • Fanger, P. O., 1970: Thermal comfort: analysis and application in environmental engineering. New York, McGraw-Hill, 244 p.

    Google Scholar 

  • Gagge, A. P., and Y. Nishi, 1976: Physical indices of the thermal environment. ASHRAE J18, 47–51.

    Google Scholar 

  • Haldane, J. S., 1905: The influence of high air temperature. J. Hyg-Cambridge, 5, 494–513.

    Article  Google Scholar 

  • Havenith, G., 2003: The physiology of heat related illness/mortality. cCASHh Workshop on Vulnerability to Thermal Stresses, 5–7 May, Freiburg, Germany.

    Google Scholar 

  • Havenith, G., I. Holmer, E. A. den Hartog, K. C. Parsons, 1999: Clothing evaporative heat resistance-proposal for improved representation in standards and models. Ann. Occup. Hyg., 43, 339–346.

    Article  Google Scholar 

  • Holmer, I., 1984: Required clothing insulation (IREQ) as an analytical index of cold stress. ASHRAE Trans 90, 1116–1128.

    Google Scholar 

  • Huang, J., 2007: Prediction of air temperature for thermal comfort of people in outdoor environments. Int. J. Biometeorol., 51, 375–382.

    Article  Google Scholar 

  • ISO, 1993: ISO/TR 11079: Evaluation of cold environments determination of required clothing insulation (IREQ) (Technical Report 11079). International Organization for Standardization, Geneva.

    Google Scholar 

  • Kim, S. C., 2008: Study for globe temperature characteristic and practical use way in downtown area on Summer season. M. S. Thesis. Gimhae, Inje University (Korean).

    Google Scholar 

  • Kim, E. B., 2013: Evaluation of Human-body Effect and Potential Risk Forecasting Models by High Temperature Environment. Ph. D. Thesis. Gimhae, Inje University (Korean).

    Google Scholar 

  • Kuehn, L. A., R. A. Stubbs, and R. S. Weaver, 1970: Theory of the globe thermometer. J. Appl. Physiol., 29, 750–757.

    Google Scholar 

  • Larsen, R. I., 1973: An Air Quality Data Analysis System for Interrelating Effects. Standards and Needed Source Reductions. J. Air Pollu. Control Assoc., 23, 933–940.

    Article  Google Scholar 

  • Levine, J. A., 2004: Nonexercise activity thermogenesis (NEAT): environment and biology. Am. J. Physiol.-Endoc. M., 286, 675–685.

    Google Scholar 

  • McCullough, E. A., B. W. Jones, and T. Tamura, 1989: A data base for determining the evaporative resistance of clothing. ASHRAE Trans, 95, 316–328.

    Google Scholar 

  • Park, J. K., W. S. Jung, S. C. Kim, and G. U. Park, 2008: On the characteristics of globe temperature variation observed at downtown in summer season. J. Environ. Sci. Int., 17, 907–918 (Korean).

    Article  Google Scholar 

  • Park, S. K., 2011: Human-Urban radiation exchange simulation model. Ph. D. thesis. University of Victoria.

    Google Scholar 

  • Parsons, K. C., 1999: International standards for the assessment of the risk of thermal strain on clothed workers in hot environments. Ann. Occup. Hyg., 43, 297–308.

    Article  Google Scholar 

  • Parsons, K. C., 2003: Human thermal environments. 2nd Ed., Taylor & Francis, London, 258–292.

    Google Scholar 

  • Parsons, K. C., G. Havenith, I. Holmer, H. Nilsson, and J. Malchaire, 1999: The effects of wind and human movement on the heat and vapour transfer properties of clothing. Ann. Occup. Hyg., 43, 347–352.

    Article  Google Scholar 

  • Passmore, R., and J. V. G. Durnin, 1967: Energy, work and leisure. Heinemann Educational Books, London.

    Google Scholar 

  • Thorsson, S., F. Lingberg, I. Eliasson, and B. Holmer, 2007: Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol., 27, 1983–1993.

    Article  Google Scholar 

  • Vernon, H. M., 1932: The globe thermometer. Proc. Inst. Heating and Ventilating Engineers, 39, 100–104.

    Google Scholar 

  • Webb, P., 1964: Bioastronautics data base. NASA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Kil Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, EB., Park, JK. Proposal for a heat balance model tailored to the Korean peninsula. Asia-Pacific J Atmos Sci 50 (Suppl 1), 657–667 (2014). https://doi.org/10.1007/s13143-014-0053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-014-0053-2

Key words

Navigation