Skip to main content
Log in

Regional climatic effects according to different estimations of biogenic volatile organic compounds during the asian summer monsoon

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A series of 60-year numerical experiments starting from 1851 was conducted using a global climate model coupled with an aerosol-cloud-radiation model to investigate the response of the Asian summer monsoon to variations in the secondary organic aerosol (SOA) flux induced by two different estimations of biogenic volatile organic compound (BVOC) emissions. One estimation was obtained from a pre-existing archive and the other was generated by a next-generation model (the Model of Emissions of Gases and Aerosols from Nature, MEGAN). The use of MEGAN resulted in an overall increase of the SOA production through a higher rate of gasto-particle conversion of BVOCs. Consequently, the atmospheric loading of organic carbon (OC) increased due to the contribution of SOA to OC aerosol. The increase of atmospheric OC aerosols was prominent in particular in the Indian subcontinent and Indochina Peninsula (IP) during the pre- and early-monsoon periods because the terrestrial biosphere is the major source of BVOC emissions and the atmospheric aerosol concentration diminishes rapidly with the arrival of monsoon rainfall. As the number of atmospheric OC particles increased, the number concentrations of cloud droplets increased, but their size decreased. These changes represent a combination of aerosol-cloud interactions that were favorable to rainfall suppression. However, the modeled precipitation was slightly enhanced in May over the oceans that surround the Indian subcontinent and IP. Further analysis revealed that a compensating updraft in the surrounding oceans was induced by the thermally-driven downdraft in the IP, which was a result of surface cooling associated with direct OC aerosol radiative forcing, and was able to surpass the aerosolcloud interactions. The co-existence of oceanic ascending motion with the maximum convective available potential energy was also found to be crucial for rainfall formation. Although the model produced statistically significant rainfall changes with locally organized patterns, the suggested pathways should be considered guardedly because in the simulation results, 1) the BVOC-induced aerosol direct effect was marginal; 2) cloud-aerosol interactions were modeldependent; and 3) Asian summer monsoons were biased to a nonnegligible extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol type. J. Geophys. Res., 105, 6837–6844.

    Google Scholar 

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.

    Article  Google Scholar 

  • Berry, E. X., 1967: Cloud droplet growth by collection. J. Atmos. Sci., 24, 688–701.

    Article  Google Scholar 

  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502–505.

    Article  Google Scholar 

  • Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect: A sensitivity study with two general circulation models. Tellus, 47B, 281–300.

    Article  Google Scholar 

  • Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy, and S. G. Warren, 1991: Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus, 43AB, 152–163.

    Google Scholar 

  • Chung, S. H., and J. H. Seinfeld, 2002: Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res.-Atmos., 107, 4407, doi:10.1029/2001JD001397.

    Article  Google Scholar 

  • Collins, W. J., R. G. Derwent, C. E. Johnson, and D. S. Stevenson, 2002: The oxidation of organic compounds in the troposphere and their global warming potentials. Climatic Change, 52, 453–479.

    Article  Google Scholar 

  • Deepak, A., and H. G. Gerber, 1983: Report of the experts meeting on aerosols and their climatic effects, Report of WCP-55, 107 pp., World Meteorological Organization, Geneva, Switzerland.

    Google Scholar 

  • Dusek, U., and Coauthors, 2006: Size matters more than chemistry for cloud nucleating ability of aerosol particles. Science, 312, 1375–1378.

    Article  Google Scholar 

  • Engelhart, G. J., A. Asa-Awuku, A. Nenes, and S. N. Pandis, 2008: CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol. Atmos. Chem. Phys., 8, 3937–3949.

    Article  Google Scholar 

  • Graedel, T. E., and Coauthors, 1993: A compilation of inventories of emissions to the atmosphere. Global Biogeochem. Cycles, 7, 1–26.

    Article  Google Scholar 

  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657–659.

    Article  Google Scholar 

  • Guenther, A. B., R. K. Monson, R. Fall, 1991: Isoprene and monoterpene emission rate variability - observations with eucalyptus and emission rate algorithm development. J. Geophys. Res.-Atmos., 96, 10799–10808.

    Article  Google Scholar 

  • Guenther, A., and Coauthors, 1995: A Global-model of natural volatile organic-compound emissions. J. Geophys. Res., 100, 8873–8892.

    Article  Google Scholar 

  • Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 3181–3210.

    Article  Google Scholar 

  • Hallquist, M., and Coauthors, 2009: The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys., 9, 5155–5235.

    Article  Google Scholar 

  • Hirabayashi, Y., S. Kanae, I. Struthers, and T. Oki, 2005: A 100-year (1901–2000) global retrospective estimation of the terrestrial water cycle. J. Geophys. Res., 110, D19101, doi:10.1029/2004JD005492.

    Article  Google Scholar 

  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    Article  Google Scholar 

  • Jacobson, M., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697.

    Article  Google Scholar 

  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39, 448–460.

    Article  Google Scholar 

  • Jones, A., D. L. Roberts, and A. Slingo, 1994: A climate model study of indirect radiative forcing by anthropogenic sulfate aerosols. Nature, 370, 450–453.

    Article  Google Scholar 

  • Kanakidou, M., and Coauthors, 2005: Organic aerosol and global climate modeling: A review. Atmos. Chem. Phys., 5, 1053–1123.

    Article  Google Scholar 

  • Kuhn, U., and Coauthors, 2004: Seasonal differences in isoprene and lightdependent monoterpene emission by Amazonian tree species. Global Change Biol., 10, 663–682.

    Article  Google Scholar 

  • Lathière, J., C. Hewitt, and D. Beerling, 2010: Sensitivity of isoprene emissions from the terrestrial biosphere to 20th century changes in atmospheric CO2 concentration, climate, and land use. Global Biogeochem. Cycle, 24, GB1004, doi:10.1029/2009GB003548.

    Google Scholar 

  • Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Clim. Dynam., 26, 855–864.

    Article  Google Scholar 

  • Lean, J., G. Rottman, J. Harder, and G. Kopp, 2005: SORCE contributions to new understanding of global change and solar variability. Solar. Phys., 230, 27–53.

    Article  Google Scholar 

  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change, 9, 213–241.

    Article  Google Scholar 

  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 2250–2253.

    Article  Google Scholar 

  • Nakajima, T., M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 4869–4878.

    Article  Google Scholar 

  • Pierce, T. E., and P. S. Waldruff, 1991: Pc-Beis - A personal-computer version of the biogenic emissions inventory system. J. Air Waste Manage., 41, 937–941.

    Article  Google Scholar 

  • Pierce, T., C. Geron, L. Bender, R. Dennis, G. Tonnesen, and A. Guenther, 1998: Influence of increased isoprene emissions on regional ozone modeling. J. Geophys. Res., 103, 25611–25629.

    Article  Google Scholar 

  • Posselt, R., and U. Lohmann, 2008: Influence of giant CCN on warm rain processes in the ECHAM5 GCM. Atmos. Chem. Phys., 8, 3769–3788.

    Article  Google Scholar 

  • Quaas, J., and Coauthors, 2009: Aerosol indirect effects - general circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 8697–8717.

    Article  Google Scholar 

  • Ramanathan, V., and Coauthors, 2005: Atmospheric brown clouds: Impact on South Asian climate and hydrologic cycle. Proc. Natl. Acad. Sci., 102, 5326–5333.

    Article  Google Scholar 

  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13, 997–1027.

    Article  Google Scholar 

  • Rosenfeld, D., R. Lahav, A. Khain, and M. Pinsky, 2002: The role of sea spray in cleansing air pollution over ocean via cloud processes. Science, 297, 1667–1670.

    Article  Google Scholar 

  • Rosenfeld, D., J. Dai, X. Yu, Z. Yao, X. Xu, X. Yang, C. Du., 2007: Inverse relations between amounts of air pollution and orographic precipitation. Science, 315, 1396–1398.

    Article  Google Scholar 

  • Sanderson, M. G., C. D. Jones, W. J. Collins, C. E. Johnson, and R. G. Derwent, 2003: Effect of climate change on isoprene emissions and surface ozone levels. Geophys. Res. Lett., 30, 1936, doi:10.1029/2003GL017642.

    Article  Google Scholar 

  • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depth, 1850–1990. J. Geophys. Res., 98, 22987–22994.

    Article  Google Scholar 

  • Smith, G. L., and D. Rutan, 1994: Spatial variability of outgoing longwave radiation. J. Atmos. Sci., 51, 1808–1822.

    Article  Google Scholar 

  • Sudo, K. M. Takahashi J. Kurokawa, and H. Akimoto, 2002: CHASER: A global chemical model of the troposphere 1. Model description. J. Geophys. Res., 107, 4339, doi:10.1029/2001JD001113.

    Article  Google Scholar 

  • Takahashi, H. G., and T. Yasunari, 2006: A climatological monsoon break in rainfall over Indochina-A singularity in the seasonal march of the Asian summer monsoon. J. Climate, 19, 1545–1556.

    Article  Google Scholar 

  • Takemura, T., T. Nakajima, O. Dubovik, B. N. Holben, and S. Kinne, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate, 15, 333–352.

    Article  Google Scholar 

  • Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

    Google Scholar 

  • Takemura, T., H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, and T. Nakajima, 2000: Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res., 105, 17853–17873.

    Article  Google Scholar 

  • Takemura, T., M. Egashira, K. Matsuzawa, H. Ichijo, R. O’ishi, and A. Abe-Ouchi, 2009: A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmos. Chem. Phys., 9, 3061–3073.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • Tett, S. F. B., P. A. Stott, M. R. Allen, W. J. Ingram, and J. F. B. Mitchell, 1999: Causes of twentieth-century temperature change near the Earth’s surface. Nature, 399, 569–572.

    Article  Google Scholar 

  • Textor, C., and Coauthors, 2007: The effect of harmonized emissions on aerosol properties in global models - an AeroCom experiment. Atmos. Chem. Phys., 7, 4489–4501.

    Article  Google Scholar 

  • Tsigaridis, K., and M. Kanakidou, 2007: Secondary organic aerosol importance in the future atmosphere. Atmos. Environ., 41, 4682–4692.

    Article  Google Scholar 

  • Wang, B., and LinHo, 2002: Rainy season of the Asian-Pacific summer monsoon. J. Climate, 15, 386–398.

    Article  Google Scholar 

  • Wang, B., Q. Ding, and V. Joseph, 2009: Objective definition of the Indian summer monsoon onset using large scale winds. J. Climate, 22, 3303–3316.

    Article  Google Scholar 

  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J. Climate, 23, 6312–6335.

    Article  Google Scholar 

  • Yatagai, A. O. Arakawa, K. Kamiguchi, H. Kawamoto, M. I. Nodzu, and A. Hamada, 2009: A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Sci. Online Lett. Atmos., 5, 137–140, doi:10.2151/sola.2009-035.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Takata, K., Tanaka, K. et al. Regional climatic effects according to different estimations of biogenic volatile organic compounds during the asian summer monsoon. Asia-Pacific J Atmos Sci 50, 423–435 (2014). https://doi.org/10.1007/s13143-014-0033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-014-0033-6

Key words

Navigation