Skip to main content
Log in

A numerical investigation of the impacts of anthropogenic sulfate aerosol on regional climate in East Asia

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Aerosol and its effects, especially its indirect effects, on climate have drawn more and more attention in recent years. In this study, the first indirect radiative forcing (RF) of sulfate aerosol and its impacts on the regional climate in East Asia during the period from December 2008 to November 2009 were investigated. Affected by the general circulation and the conversion efficiency from SO2 to SO4 2− in aqueous phase, a remarkable seasonal variation of sulfate was found. The results show that the highest sulfate concentration as large as 24 g m−2 appears in the summer. The indirect RF due to sulfate aerosol at the top of atmosphere (TOA) and the surface is negative, which leads to a cooling effect on the surface by 0.12°C and a reduction of precipitation by 0.01 mm d−1. The tendencies of temperature and rainfall have significant diversity in space and time. The cloud feedback, associated with the hydrologic cycle and energy budget, is responsible for this discordant distribution. The variation of low cloud dominates the change of surface temperature. The subsidence due to the cooling effect in the mid atmosphere restrained and reduced the low clouds, leading to an apparent warm effect on the surface in Northeast Mongolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.

    Article  Google Scholar 

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos Sci., 31, 674–701.

    Article  Google Scholar 

  • Chameides, W. L., 1984: The photochemistry of a remote marine stratiform cloud. J. Geophys. Res., 89, 4739–4755.

    Article  Google Scholar 

  • Chen, Q., Y. Yin, L. Jin, H. Xiao, and S. Zhu, 2011: The effect of aerosol layers on convective cloud microphysics and precipitation. Atmos. Res., 101, 327–340.

    Article  Google Scholar 

  • Chiacchio, M., and R. Vitolo, 2012: Effect of cloud cover and atmospheric circulation patterns on the observed surface solar radiation in Europe. J. Geophys. Res., 117, D18207, doi: 10.1029/2012JD017620.

    Google Scholar 

  • Coakley, J. A. Jr., R. Bernstein, and P. A. Durkee, 1987: Effect of shipstack effluents on cloud reflectivity. Science, 237, 1020–1022.

    Article  Google Scholar 

  • Conover, J., 1966: Anomalous Cloud Lines. J. Atmos. Sci., 23, 778–785.

    Article  Google Scholar 

  • Dickinson, R., R. Errico, F. Giorgi, and G. Bates, 1989: A regional climate model for the western United States. Climatic Change, 15, 383–422.

    Google Scholar 

  • Durkee, P. A., and Coauthors, 2000: The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: A test of MAST Hypotheses 1.1a and 1.1b. J. Atmos. Sci., 57, 2554–2569.

    Article  Google Scholar 

  • Ferek, R. J., D. A. Hegg, P. V. Hobbs, P. Durkee, and K. Nielsen, 1998: Measurements of ship-induced tracks in clouds off the Washington coast. J. Geophys. Res., 103, 23199–23206.

    Article  Google Scholar 

  • Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 3, 941–964.

    Article  Google Scholar 

  • ____, X. Bi, and Y. Qian, 2002: Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study. J. Geophys. Res., 107, 4439, doi:10.1029/2001JD001066

    Article  Google Scholar 

  • ____, _____, and _____, 2003: Indirect vs. direct effects of anthropogenic sulfate on the climate of East Asia as simulated with a regional coupled climate-chemistry/aerosol model. Climatic Change, 58, 345–376.

    Article  Google Scholar 

  • ____, M. R. Marinucci, and G. T. Bates, 1993a: Development of a second-generation regional climate model (RegCM2). Part I: Boundarylayer and radiative transfer processes. Mon. Weather Rev., 121, 2794–2813.

    Article  Google Scholar 

  • ____, _____, _____, and G. de Canio, 1993b: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Weather Rev., 121, 2814–2834.

    Article  Google Scholar 

  • ____, and L. O. Mearns, 1999: Regional climate modeling revisited. An introduction to the special issue. J. Geophys. Res., 104, 6335–6352.

    Google Scholar 

  • ____, and C. Shields, 1999: Tests of precipitation parameterizations available in latest version of NCAR regional climate model (RegCM) over continental United States. J. Geophys. Res., 104, 6353–6375.

    Article  Google Scholar 

  • Grell G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev., 121, 764–787

    Article  Google Scholar 

  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.

    Article  Google Scholar 

  • Haywood, J., and M. Schulz, 2007: Causes of the reduction in uncertainty in the anthropogenic radiative forcing of climate between IPCC (2001) and IPCC (2007). Geophys. Res. Lett., 34, L20701, doi:10.1029/2007GL030749.

    Article  Google Scholar 

  • He, J., J. Ju, Z. Wen, J. Lü, and Q. Jin, 2007: A review of recent advances in research on Asian monsoon in China. Adv. Atmos. Sci., 24, 972–992.

    Article  Google Scholar 

  • Hu, M., L.-Y. He, Y.-H. Zhang, M. Wang, Y. Pyo Kim, and K. C. Moon, 2002: Seasonal variation of ionic species in fine particles at Qingdao, China. Atmos. Environ., 36, 5853–5859.

    Article  Google Scholar 

  • Huang, Y., W. L. Chameides, and R. E. Dickinson, 2007: Direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia. J. Geophys. Res., 112, D03212, doi: 10.1029/2006JD007114.

    Google Scholar 

  • IPCC, 2007: Climate change 2007: the physical science basis. Agenda, 6(07).

    Google Scholar 

  • Jakob, C., and S. A. Klein, 2000: A parametrization of the effects of cloud and precipitation overlap for use in general-circulation models. Quart. J. Roy. Meteor. Soc., 126, 2525–2544.

    Article  Google Scholar 

  • Jung, J., H. Lee, Y. J. Kim, X. Liu, Y. Zhang, J. Gu, and S. Fan, 2009: Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. J. Environ. Manage., 90, 3231–3244.

    Article  Google Scholar 

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, and B. Boville, 1996: Description of the NCAR community climate model (CCM3). NCAR Tech. Note, NCAR/TN-420+STR, National Center for Atmospheric Research, Boulder, CO, 152 pp.

    Google Scholar 

  • ____, T. L. Schneider, P. J. Rasch, M. C. Barth, and J. Wong, 2000: Radiative forcing due to sulfate aerosols from simulations with the national center for atmospheric research community climate model, version 3. J. Geophys. Res., 105, 1441–1457.

    Article  Google Scholar 

  • Kim, Y.-J., B. G. Kim, M. Miller, Q. Min, and C.-K. Song, 2012. Enhanced aerosol-cloud relationships in more stable and adiabatic clouds. Asia-Pac. J. Atmos. Sci., 48, 283–293.

    Article  Google Scholar 

  • Li, J., and Z. Han, 2012: A modeling study of seasonal variation of atmospheric aerosols over East Asia. Adv. Atmos. Sci., 29, 101–117.

    Article  Google Scholar 

  • Li, S., T. Wang, B. Zhuang, and Y. Han. 2009: Indirect radiative forcing and climatic effect of the anthropogenic nitrate aerosol on regional climate of China. Adv. Atmos. Sci. 26, 543–552.

    Article  Google Scholar 

  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: a review. Atmos. Chem. Phys., 5, 715–737.

    Article  Google Scholar 

  • ____, _____, J. Penner, and R. Leaitch, 2000: Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment. J. Geophys. Res., 105, 12193–12206.

    Article  Google Scholar 

  • Morcrette, J.-J., and C. Jakob, 2000: The response of the ECMWF model to changes in the cloud overlap assumption. Mon. Weather Rev., 128, 1707–1732.

    Article  Google Scholar 

  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 1395–1409.

    Article  Google Scholar 

  • Qian, Y., and F. Giorgi, 1999: Interactive coupling of regional climate and sulfate aerosol models over East Asia. J. Geophys. Res, 104, 6501–6514.

    Article  Google Scholar 

  • ____, _____, Y. Huang, W. Chameides, and C. Luo, 2001: Regional simulation of anthropogenic sulfur over East Asia and its sensitivity to model parameters. Tellus B, 53, 171–191.

    Article  Google Scholar 

  • Radke, L. F., J. A. JR Coakley, and M. D. King, 1989: Direct and remote sensing observations of the effects of ships on clouds. Science, 246, 1146–1149.

    Article  Google Scholar 

  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie, Report 218, 90 pp.

    Google Scholar 

  • Rosenfeld, D., 2000. Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793–1796.

    Article  Google Scholar 

  • ____, 2006: Aerosol-cloud interactions control of earth radiation and latent heat release budgets. Space Sci. Rev., 125, 149–157.

    Article  Google Scholar 

  • Rotstayn, L. D., and J. E. Penner, 2001: Indirect aerosol forcing, quasi forcing, and climate response. J. Climate, 14, 2960–2975.

    Article  Google Scholar 

  • Seth, A., and F. Giorgi, 1998: The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J. Climate, 11, 2698–2712.

    Article  Google Scholar 

  • Shen, Z., R. Arimoto, J. Cao, R. Zhang, X. Li, N. Du, T. Okuda, S. Nakao, and S. Tanaka, 2008: Seasonal variations and evidence for the effectiveness of pollution controls on water-soluble inorganic species in total suspended particulates and fine particulate matter from Xi’an, China. J. Air Waste Manage. Assoc., 58, 1560–1570.

    Article  Google Scholar 

  • Solmon, F., F. Giorgi, and C. Liousse, 2006: Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B, 58, 51–72.

    Article  Google Scholar 

  • Son, J.-Y., J.-T. Lee, K.-H. Kim, K. Jung, and M. L. Bell, 2012: Characterization of fine particulate matter and associations between particulate chemical constituents and mortality in Seoul, Korea. Environ. Health Perspect., 120, 872–878.

    Article  Google Scholar 

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237–273.

    Article  Google Scholar 

  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ (1967), 8, 1251–1256.

    Article  Google Scholar 

  • ____, 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152.

    Article  Google Scholar 

  • van Pinxteren, D., E. Brüggemann, T. Gnauk, Y. Iinuma, K. Müller, A. Nowak, P. Achtert, A. Wiedensohler, and H. Herrmann, 2009: Size- and time-resolved chemical particle characterization during CAREBeijing-2006: Different pollution regimes and diurnal profiles. J. Geophys. Res., 114: D00G09, doi:10.1029/2008JD010890.

  • Veefkind, J., J. Van der Hage, and H. Ten Brink, 1996: Nephelometer derived and directly measured aerosol optical depth of the atmospheric boundary layer. Atmos. Res., 41, 217–228.

    Article  Google Scholar 

  • Wang, T., S. Li, Y. Shen, J. Deng, and M. Xie, 2010a: Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system. J. Geophys. Res., 115, D00K26, doi: 10.1029/2009JD013264.

    Google Scholar 

  • ____, _____, B. Zhuang, F. Shen, and G. Liu, 2010b: Study on the first indirect climatic effect of sulfate aerosol in China. Scientia Meteor. Sinica, 30, 730–740. (in Chinese)

    Google Scholar 

  • Wen, B., Y. Yin, Y. Qin, and K. Chen, 2013: Chemical characteristics of water-soluble components of aerosol particles at different altitudes of the mount huang in the summer. Environ. Sci., 34, 1983–1981. (in Chinese)

    Google Scholar 

  • Williams, K., A. Jones, D. Roberts, C. Senior, and M. Woodage, 2001: The response of the climate system to the indirect effects of anthropogenic sulfate aerosol. Clim. Dynam., 17, 845–856.

    Article  Google Scholar 

  • Wu, J., W. Wang, Y. Xie, S. Guo, X. Chen, and Y. Luo, 2003: Interactive coupling of regional climate model and atmospheric chemistry model over China area. J. Yunnan Uni. (Natural Sci. Edit.), 25, 41–47. (in Chinese)

    Google Scholar 

  • ____, Y. Luo, and W. Wang, 2005: The comparison of different simulation methods for the climate responses of the radiative forcing of anthropogenic sulfate aerosol over east Asia. J. Yunnan Uni. (Natural Sci. Edit.), 27, 323–331. (in Chinese)

    Google Scholar 

  • Wu, P., and Z. Han, 2011: A modeling study of indirect radiative and climatic effects of sulfate over East Asia. Chinese J. Atmos. Sci., 35, 547–559. (in Chinese)

    Google Scholar 

  • Xu, H., Y. Wang, T. Wen, Y. Yang, and Y. Zhao, 2009: Characteristics and source apportionment of atmospheric aerosols at the summit of Mount Tai during summertime. Atmos. Chem. Phys. Discuss., 9, 16361–16379.

    Article  Google Scholar 

  • Yao, X., C. K. Chan, M. Fang, S. Cadle, T. Chan, P. Mulawa, K. He, and B. Ye, 2002: The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ., 36, 4223–4234.

    Article  Google Scholar 

  • Yin, Y., S. Wurzler, Z. Levin, and T. G. Reisin, 2002: Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. J. Geophys. Res., 107, 4724, doi:10.1029/2001-JD001544.

    Article  Google Scholar 

  • Zhang, D., A. Zakey, X. Gao, F. Giorgi, and F. Solmon, 2009a: Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model. Atmos. Chem. Phys., 9, 1095–1110.

    Article  Google Scholar 

  • Zhang, Q., and Coauthors, 2009b: Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131–5153.

    Article  Google Scholar 

  • Zhuang, B., F. Jiang, T. Wang, S. Li, and B. Zhu, 2011: Investigation on the direct radiative effect of fossil fuel black-carbon aerosol over China. Theor. Appl. Climatol. 104, 301–312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Yin, Y., Xiao, H. et al. A numerical investigation of the impacts of anthropogenic sulfate aerosol on regional climate in East Asia. Asia-Pacific J Atmos Sci 50, 391–403 (2014). https://doi.org/10.1007/s13143-014-0026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-014-0026-5

Key words

Navigation