Skip to main content

Advertisement

Log in

Can FDG PET Serve as a Clinically Relevant Tool for Detecting Active Non-sarcoidotic Myocarditis?

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The diagnostic work-up for myocarditis largely depends on non-invasive imaging because of the low yield of endomyocardial biopsy. In addition, differentiation among possible impressions is essential because of its non-specific clinical presentations. This ambiguity has led to the predominant use of cardiac magnetic resonance imaging techniques in the management of myocarditis, particularly during the global pandemic. Despite the unique ability of F-18 fluorodeoxyglucose positron emission tomography to visualize and quantify active myocardial inflammation, which has been well established in cardiac sarcoidosis, its diagnostic contribution in non-sarcoidotic myocarditis remains uncertain. This article reviews the current evidence on the non-invasive imaging diagnosis of non-sarcoidotic myocarditis and discusses the potential role of F-18 fluorodeoxyglucose positron emission tomography as a clinically relevant imaging tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Ammirati E, Frigerio M, Adler ED, Basso C, Birnie DH, Brambatti M, et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: an expert consensus document. Circ Heart Fail. 2020;13: e007405.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferreira VM, Plein S, Wong TC, Tao Q, Raisi-Estabragh Z, Jain SS, et al. Cardiovascular magnetic resonance for evaluation of cardiac involvement in COVID-19: recommendations by the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson. 2023;25:21.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gluckman TJ, Bhave NM, Allen LA, Chung EH, Spatz ES, Ammirati E, et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2022;79:1717–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Skali H, Schulman AR, Dorbala S. 18F-FDG PET/CT for the assessment of myocardial sarcoidosis. Curr Cardiol Rep. 2013;15:352.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11:1305–23.

    Article  PubMed  Google Scholar 

  6. Terasaki F, Azuma A, Anzai T, Ishizaka N, Ishida Y, Isobe M, et al. JCS 2016 guideline on diagnosis and treatment of cardiac sarcoidosis - digest version. Circ J. 2019;83:2329–88.

    Article  PubMed  Google Scholar 

  7. Ahmadian A, Pawar S, Govender P, Berman J, Ruberg FL, Miller EJ. The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol. 2017;24:413–24.

    Article  PubMed  Google Scholar 

  8. Coulden RA, Sonnex EP, Abele JT, Crean AM. Utility of FDG PET and cardiac MRI in diagnosis and monitoring of immunosuppressive treatment in cardiac sarcoidosis. Radiol Cardiothorac Imaging. 2020;2: e190140.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Osborne MT, Hulten EA, Singh A, Waller AH, Bittencourt MS, Stewart GC, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol. 2014;21:166–74.

    Article  PubMed  Google Scholar 

  10. Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU. FDG PET/CT in infection and inflammation—current and emerging clinical applications. Clin Radiol. 2015;70:787–800.

    Article  CAS  PubMed  Google Scholar 

  11. Thackeray JT, Bengel FM. Molecular imaging of myocardial inflammation with positron emission yomography post-ischemia: a determinant of subsequent remodeling or recovery. JACC Cardiovasc Imaging. 2018;11:1340–55.

    Article  PubMed  Google Scholar 

  12. Stanley WC. Changes in cardiac metabolism: a critical step from stable angina to ischaemic cardiomyopathy. Eur Heart J. 2001;3:O2-7.

    Article  Google Scholar 

  13. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.

    Article  CAS  PubMed  Google Scholar 

  14. Kang JY, Lee MY, Kim YH. Associations of physiologic myocardial 18F-FDG uptake with fasting duration, HbA1c, and regular exercise. Ann Nucl Med. 2021;35:195–202.

    Article  CAS  PubMed  Google Scholar 

  15. Inglese E, Leva L, Matheoud R, Sacchetti G, Secco C, Gandolfo P, et al. Spatial and temporal heterogeneity of regional myocardial uptake in patients without heart disease under fasting conditions on repeated whole-body F-18-FDG PET/CT. J Nucl Med. 2007;48:1662–9.

    Article  PubMed  Google Scholar 

  16. Chevreuil O, Hultin M, Ostergaard P, Olivecrona T. Depletion of lipoprotein lipase after heparin administration. Arterioscler Thromb. 1993;13:1391–6.

    Article  CAS  PubMed  Google Scholar 

  17. Ishida Y, Yoshinaga K, Miyagawa M, Moroi M, Kondoh C, Kiso K, et al. Recommendations for F-18-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology Recommendations. Ann Nucl Med. 2014;28:393–403.

    Article  PubMed  Google Scholar 

  18. Kumita S, Yoshinaga K, Miyagawa M, Momose M, Kiso K, Kasai T, et al. Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for diagnosis of cardiac sarcoidosis-2018 update: Japanese Society of Nuclear Cardiology recommendations. J Nucl Cardiol. 2019;26:1414–33.

    Article  PubMed  Google Scholar 

  19. Jang IK, Hursting MJ. When heparins promote thrombosis: review of heparin-induced thrombocytopenia. Circulation. 2005;111:2671–83.

    Article  PubMed  Google Scholar 

  20. Miyagawa M, Tashiro R, Watanabe E, Kawaguchi N, Ishimura H, Kido T, et al. Optimal patient preparation for detection and assessment of cardiac sarcoidosis by FDG-PET. Ann Nucl Cardiol. 2017;3:113–6.

    Article  Google Scholar 

  21. Chareonthaitawee P, Beanlands RS, Chen W, Dorbala S, Miller EJ, Murthy VL, et al. Joint SNMMI-ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol. 2017;24:1741–58.

    Article  PubMed  Google Scholar 

  22. Bois JP, Muser D, Chareonthaitawee P. PET/CT evaluation of cardiac sarcoidosis. PET Clin. 2019;14:223–32.

    Article  PubMed  Google Scholar 

  23. Chan SH, Huang CK, Luzhbin D, Hou PN, Chang YT, Wu J. Meta-analysis of the effectiveness of heparin in suppressing physiological myocardial FDG uptake in PET/CT. J Nucl Cardiol. 2023. https://doi.org/10.1007/s12350-023-03296-2.

    Article  PubMed  Google Scholar 

  24. Manabe O, Yoshinaga K, Ohira H, Masuda A, Sato T, Tsujino I, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial 18F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol. 2016;23:244–52.

    Article  PubMed  Google Scholar 

  25. Scholtens AM, van den Berk AM, van der Sluis NL, Esser JP, Lammers GK, de Klerk JMH, et al. Suppression of myocardial glucose metabolism in FDG PET/CT: impact of dose variation in heparin bolus pre-administration. Eur J Nucl Med Mol Imaging. 2020;47:2698–702.

    Article  CAS  PubMed  Google Scholar 

  26. Scholtens AM, Verberne HJ, Budde RP, Lam MG. Additional heparin preadministration improves cardiac glucose metabolism suppression over low-carbohydrate diet alone in 18F-FDG PET imaging. J Nucl Med. 2016;57:568–73.

    Article  CAS  PubMed  Google Scholar 

  27. Boursier C, Duval X, Bourdon A, Imbert L, Mahida B, Chevalier E, et al. ECG-gated cardiac FDG PET acquisitions significantly improve detectability of infective endocarditis. JACC Cardiovasc Imaging. 2020;13:2691–3.

    Article  PubMed  Google Scholar 

  28. Slart R, Glaudemans A, Gheysens O, Lubberink M, Kero T, Dweck MR, et al. Procedural recommendations of cardiac PET/CT imaging: standardization in inflammatory-, infective-, infiltrative-, and innervation (4Is)-related cardiovascular diseases: a joint collaboration of the EACVI and the EANM. Eur J Nucl Med Mol Imaging. 2021;48:1016–39.

    Article  PubMed  Google Scholar 

  29. Sahebkar A, Simental-Mendia LE, Pedone C, Ferretti G, Nachtigal P, Bo S, et al. Statin therapy and plasma free fatty acids: a systematic review and meta-analysis of controlled clinical trials. Br J Clin Pharmacol. 2016;81:807–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minamimoto R. Series of myocardial FDG uptake requiring considerations of myocardial abnormalities in FDG-PET/CT. Jpn J Radiol. 2021;39:540–57.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liang JJ, Hebl VB, DeSimone CV, Madhavan M, Nanda S, Kapa S, et al. Electrogram guidance: a method to increase the precision and diagnostic yield of endomyocardial biopsy for suspected cardiac sarcoidosis and myocarditis. JACC Heart Fail. 2014;2:466–73.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Simonen P, Lehtonen J, Kandolin R, Schildt J, Marjasuo S, Miettinen H, et al. F-18-fluorodeoxyglucose positron emission tomography-guided sampling of mediastinal lymph nodes in the diagnosis of cardiac sarcoidosis. Am J Cardiol. 2015;116:1581–5.

    Article  PubMed  Google Scholar 

  33. Terasaki F, Kusano K, Nakajima T, Yazaki Y, Morimoto SI, Culver DA, et al. The characteristics of Japanese guidelines on diagnosis and treatment of cardiac sarcoidosis compared with the previous guidelines. Sarcoidosis Vasc Diffuse Lung Dis. 2022;39: e2022028.

    PubMed  PubMed Central  Google Scholar 

  34. Sato K, Kawamatsu N, Yamamoto M, Machino-Ohtsuka T, Ishizu T, Ieda M. Utility of updated Japanese Circulation Society Guidelines to diagnose isolated cardiac sarcoidosis. J Am Heart Assoc. 2022;11: e025565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saric P, Young KA, Rodriguez-Porcel M, Chareonthaitawee P. PET imaging in cardiac sarcoidosis: a narrative review with focus on novel PET tracers. Pharmaceuticals (Basel). 2021;14. https://doi.org/10.3390/ph14121286.

  36. Kim SJ, Pak K, Kim K. Diagnostic performance of F-18 FDG PET for detection of cardiac sarcoidosis; a systematic review and meta-analysis. J Nucl Cardiol. 2020;27:2103–15.

    Article  PubMed  Google Scholar 

  37. Morimoto R, Unno K, Fujita N, Sakuragi Y, Nishimoto T, Yamashita M, et al. Prospective analysis of immunosuppressive therapy in cardiac sarcoidosis with fluorodeoxyglucose myocardial accumulation: PRESTIGE Study. JACC Cardiovasc Imaging. 2023. https://doi.org/10.1016/j.jcmg.2023.05.017.

    Article  PubMed  Google Scholar 

  38. Hassan K, Doubell A, Kyriakakis C, Joubert L, Robbertse PP, Van Zyl G, et al. Comparing the findings and diagnostic sensitivity of cardiovascular magnetic resonance in biopsy confirmed acute myocarditis with infarct-like vs. heart failure presentation. J Cardiovasc Magn Reson. 2022;24:69.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chaaban N, Kshatriya S. Myocarditis on 18FDG-PET imaging. Radiol Case Rep. 2022;17:2120–2.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lamacie MM, Almufleh A, Nair V, Stadnick E, Birnie D, Beanlands RSB, et al. Serial 18F-fluorodeoxyglucose positron emission tomography imaging in a patient with giant cell myocarditis. Circ Cardiovasc Imaging. 2020;13: e009940.

    Article  PubMed  Google Scholar 

  41. Lee CH, Kong EJ. FDG PET/MRI of acute myocarditis after mRNA COVID-19 vaccination. Clin Nucl Med. 2022;47:e421–2.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Perel-Winkler A, Bokhari S, Perez-Recio T, Zartoshti A, Askanase A, Geraldino-Pardilla L. Myocarditis in systemic lupus erythematosus diagnosed by 18F-fluorodeoxyglucose positron emission tomography. Lupus Sci Med. 2018;5: e000265.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Takano H, Nakagawa K, Ishio N, Daimon M, Daimon M, Kobayashi Y, et al. Active myocarditis in a patient with chronic active Epstein-Barr virus infection. Int J Cardiol. 2008;130:e11-3.

    Article  PubMed  Google Scholar 

  44. Nensa F, Poeppel TD, Krings P, Schlosser T. Multiparametric assessment of myocarditis using simultaneous positron emission tomography/magnetic resonance imaging. Eur Heart J. 2014;35:2173.

    Article  PubMed  Google Scholar 

  45. von Olshausen G, Hyafil F, Langwieser N, Laugwitz KL, Schwaiger M, Ibrahim T. Detection of acute inflammatory myocarditis in Epstein Barr virus infection using hybrid 18F-fluoro-deoxyglucose-positron emission tomography/magnetic resonance imaging. Circulation. 2014;130:925–6.

    Article  Google Scholar 

  46. Nensa F, Kloth J, Tezgah E, Poeppel TD, Heusch P, Goebel J, et al. Feasibility of FDG-PET in myocarditis: comparison to CMR using integrated PET/MRI. J Nucl Cardiol. 2018;25:785–94.

    Article  PubMed  Google Scholar 

  47. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol. 2009;53:1475–87.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Peretto G, Busnardo E, Ferro P, Palmisano A, Vignale D, Esposito A, et al. Clinical applications of FDG-PET scan in arrhythmic myocarditis. JACC Cardiovasc Imaging. 2022;15:1771–80.

    Article  PubMed  Google Scholar 

  49. Hanneman K, Kadoch M, Guo HH, Jamali M, Quon A, Iagaru A, et al. Initial experience with simultaneous 18F-FDG PET/MRI in the evaluation of cardiac sarcoidosis and myocarditis. Clin Nucl Med. 2017;42:e328–34.

    Article  PubMed  Google Scholar 

  50. Hayase J, Do DH, Liang JJ, Kim M, Lee B, Ajijola O, et al. Detection of inflammation using cardiac positron emission tomography for evaluation of ventricular arrhythmias: an institutional experience. Heart Rhythm. 2022;19:2064–72.

    Article  PubMed  Google Scholar 

  51. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol. 2018;72:3158–76.

    Article  PubMed  Google Scholar 

  52. Barbato E, Mehilli J, Sibbing D, Siontis GCM, Collet JP, Thiele H, et al. Questions and answers on antithrombotic therapy and revascularization strategies in non-ST-elevation acute coronary syndrome (NSTE-ACS): a companion document of the 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42:1368–78.

    Article  PubMed  Google Scholar 

  53. Singh T, Chapman AR, Dweck MR, Mills NL, Newby DE. MINOCA: a heterogenous group of conditions associated with myocardial damage. Heart. 2021;107:1458–64.

    Article  PubMed  Google Scholar 

  54. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J. 2019;40:237–69.

    Article  PubMed  Google Scholar 

  55. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016;18:89. https://doi.org/10.1186/s12968-016-0308-4.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen W, Jeudy J. Assessment of myocarditis: cardiac MR, PET/CT, or PET/MR? Curr Cardiol Rep. 2019;21:76. https://doi.org/10.1007/s11886-019-1158-0.

    Article  PubMed  Google Scholar 

  57. Cundari G, Galea N, De Rubeis G, Frustaci A, Cilia F, Mancuso G, et al. Use of the new Lake Louise Criteria improves CMR detection of atypical forms of acute myocarditis. Int J Cardiovasc Imaging. 2021;37:1395–404.

    Article  PubMed  Google Scholar 

  58. Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42:1289–367.

    Article  PubMed  Google Scholar 

  59. Zhao S, Kuge Y, Nakada K, Mochizuki T, Takei T, Okada F, et al. Effect of steroids on [18F]fluorodeoxyglucose uptake in an experimental tumour model. Nucl Med Commun. 2004;25:727–30.

    Article  CAS  PubMed  Google Scholar 

  60. Liberman AC, Budzinski ML, Sokn C, Gobbini RP, Steininger A, Arzt E. Regulatory and mechanistic actions of glucocorticoids on T and inflammatory cells. Front Endocrinol (Lausanne). 2018;9:235. https://doi.org/10.3389/fendo.2018.00235.

    Article  PubMed  Google Scholar 

  61. Geiger KR, Pasvolsky O, Berger T, Raanani P, Shochat T, Gurion R, et al. Effect of steroid treatment on the diagnostic yield of baseline 18F-fluorodeoxyglucose positron emission tomography in aggressive B cell lymphoma. EJNMMI Res. 2022;12:59. https://doi.org/10.1186/s13550-022-00924-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brepoels L, Stroobants S, Vandenberghe P, Spaepen K, Dupont P, Nuyts J, et al. Effect of corticosteroids on 18F-FDG uptake in tumor lesions after chemotherapy. J Nucl Med. 2007;48:390–7.

    CAS  PubMed  Google Scholar 

  63. Nielsen BD, Gormsen LC, Hansen IT, Keller KK, Therkildsen P, Hauge EM. Three days of high-dose glucocorticoid treatment attenuates large-vessel 18F-FDG uptake in large-vessel giant cell arteritis but with a limited impact on diagnostic accuracy. Eur J Nucl Med Mol Imaging. 2018;45:1119–28.

    Article  CAS  PubMed  Google Scholar 

  64. Kotanidis CP, Bazmpani MA, Haidich AB, Karvounis C, Antoniades C, Karamitsos TD. Diagnostic accuracy of cardiovascular magnetic resonance in acute myocarditis: a systematic review and meta-analysis. JACC Cardiovasc Imaging. 2018;11:1583–90.

    Article  PubMed  Google Scholar 

  65. Polte CL, Bobbio E, Bollano E, Bergh N, Polte C, Himmelman J, et al. Cardiovascular magnetic resonance in myocarditis. Diagnostics (Basel). 2022;12. https://doi.org/10.3390/diagnostics12020399.

  66. Tschope C, Ammirati E, Bozkurt B, Caforio ALP, Cooper LT, Felix SB, et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol. 2021;18:169–93.

    Article  PubMed  Google Scholar 

  67. Hanneman K, Houbois C, Schoffel A, Gustafson D, Iwanochko RM, Wintersperger BJ, et al. Combined cardiac fluorodeoxyglucose-positron emission tomography/magnetic resonance imaging assessment of myocardial injury in patients who recently recovered from COVID-19. JAMA Cardiol. 2022;7:298–308.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Marschner CA, Thavendiranathan P, Gustafson D, Howe KL, Fish JE, Iwanochko RM, et al. Myocardial inflammation on FDG PET/MRI and clinical outcomes in symptomatic and asymptomatic participants after COVID-19 vaccination. Radiol Cardiothorac Imaging. 2023;5: e220247.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Amigues I, Tugcu A, Russo C, Giles JT, Morgenstein R, Zartoshti A, et al. Myocardial inflammation, measured using 18-fluorodeoxyglucose positron emission tomography with computed tomography, is associated with disease activity in rheumatoid arthritis. Arthritis Rheumatol. 2019;71:496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marmursztejn J, Guillevin L, Trebossen R, Cohen P, Guilpain P, Pagnoux C, et al. Churg-Strauss syndrome cardiac involvement evaluated by cardiac magnetic resonance imaging and positron-emission tomography: a prospective study on 20 patients. Rheumatology (Oxford). 2013;52:642–50.

    Article  CAS  PubMed  Google Scholar 

  71. Özütemiz C, Koksel Y, Froelich JW, Rubin N, Bhargava M, Roukuz H, et al. Comparison of the effect of three different dietary modifications on myocardial suppression in 18F-FDG PET/CT evaluation of patients for suspected cardiac sarcoidosis. J Nucl Med. 2021;62:1759–67.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant (BCRI22027, Principal Investigators: S.G.C) from Chonnam National University Hospital Biomedical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Geon Cho.

Ethics declarations

Conflict of Interest

Sang-Geon Cho declares no conflict of interest.

Ethical Approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, SG. Can FDG PET Serve as a Clinically Relevant Tool for Detecting Active Non-sarcoidotic Myocarditis?. Nucl Med Mol Imaging (2023). https://doi.org/10.1007/s13139-023-00827-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13139-023-00827-0

Keywords

Navigation