Skip to main content
Log in

A Pictorial Review of I-123 MIBG Imaging of Neuroblastoma Utilizing a State-of-the-Art CZT SPECT/CT System

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The field of nuclear medicine is entering a new era of gamma-camera technology. Solid-state SPECT/CT systems will gradually replace the thallium-activated sodium-iodide NaI(Tl) systems. This digital technology allows drastic improvements in image quality, radiotracer dose reduction, and procedure efficiency. This pictorial review presents our initial experience on an NM/CT 870 CZT system (GE Healthcare), equipped with dual-head cadmium zinc telluride (CZT) detectors, for I-123 metaiodobenzylguanidine (MIBG) imaging in pediatric neuroblastoma. On planar imaging, CZT shows greater image quality than at conventional gamma-camera using the Infinia Hawkeye (GE Healthcare). Physiologic structures such as salivary glands and myocardium show sharper borders with a more notable signal-to-noise ratio at CZT than conventional gamma camera. On SPECT imaging, the CZT scanner, combined with resolution recovery, demonstrates either comparable or greater image quality at 80% of the conventional gamma camera’s acquisition time. Due to the 2.46-mm detector pixel with fully registered collimator holes matching each pixel and direct conversion of photons into electrical signals, the CZT gamma camera system provides significant advantages in photon localization and energy resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010;36:277–85.

    Article  PubMed  Google Scholar 

  2. Spix C, Pastore G, Sankila R, Stiller CA, Steliarova-Foucher E. Neuroblastoma incidence and survival in European children (1978–1997): Report from the Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42:2081–91.

    Article  PubMed  Google Scholar 

  3. Lonergan GJ, Schwab CM, Suarez ES, Carlson CL. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: Radiologic-pathologic correlation. Radiographics. 2002;22:911–34.

    Article  PubMed  Google Scholar 

  4. Park JR, Eggert A, Caron H. Neuroblastoma: Biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010;24:65–86.

    Article  PubMed  Google Scholar 

  5. Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: Consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011;261:243–57.

    Article  PubMed  Google Scholar 

  6. Vik TA, Pfluger T, Kadota R, Castel V, Tulchinsky M, Farto JC, et al. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: Results from a prospective multicenter trial. Pediatr Blood Cancer. 2009;52:784–90.

    Article  PubMed  Google Scholar 

  7. Matthay KK, Shulkin B, Ladenstein R, Michon J, Giammarile F, Lewington V, et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: A report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer. 2010;102:1319–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Decarolis B, Schneider C, Hero B, Simon T, Volland R, Roels F, et al. Iodine-123 metaiodobenzylguanidine scintigraphy scoring allows prediction of outcome in patients with stage 4 neuroblastoma: Results of the Cologne interscore comparison study. J Clin Oncol. 2013;31:944–51.

    Article  CAS  PubMed  Google Scholar 

  9. Sharp SE, Trout AT, Weiss BD, Gelfand MJ. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics. 2016;36:258–78.

    Article  PubMed  Google Scholar 

  10. Fukuoka M, Taki J, Mochizuki T, Kinuya S. Comparison of diagnostic value of I-123 MIBG and high-dose I-131 MIBG scintigraphy including incremental value of SPECT/CT over planar image in patients with malignant pheochromocytoma/paraganglioma and neuroblastoma. Clin Nucl Med. 2011;36:1–7.

    Article  PubMed  Google Scholar 

  11. Desmonts C, Bouthiba MA, Enilorac B, Nganoa C, Agostini D, Aide N. Evaluation of a new multipurpose whole-body CzT-based camera: Comparison with a dual-head Anger camera and first clinical images. EJNMMI Phys. 2020;7:18.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ito T, Matsusaka Y, Onoguchi M, Ichikawa H, Okuda K, Shibutani T, et al. Experimental evaluation of the GE NM/CT 870 CZT clinical SPECT system equipped with WEHR and MEHRS collimator. J Appl Clin Med Phys. 2021;22:165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  13. NM/CT 870 CZT. A Digital SPECT/CT. Product data sheet. DOC2109131 Rev. 4. GE Healthcare; 2023.

  14. Ben-Haim S, Kennedy J, Keidar Z. Novel cadmium zinc telluride devices for myocardial perfusion imaging-Technological aspects and clinical applications. Semin Nucl Med. 2016;46:273–85.

    Article  PubMed  Google Scholar 

  15. Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: New designs and clinical implications. J Nucl Med. 2011;52:210–7.

    Article  PubMed  Google Scholar 

  16. Bellevre D, Manrique A, Legallois D, Bross S, Baavour R, Roth N, et al. First determination of the heart-to-mediastinum ratio using cardiac dual isotope ((1)(2)(3)I-MIBG/(9)(9)mTc-tetrofosmin) CZT imaging in patients with heart failure: The ADRECARD study. Eur J Nucl Med Mol Imaging. 2015;42:1912–9.

    Article  PubMed  Google Scholar 

  17. Miyazaki Y, Kato Y, Imoto A, Fukuchi K. Imaging of the thyroid and parathyroid using a cardiac cadmium zinc telluride camera: Phantom studies. J Nucl Med Technol. 2018;46:39–44.

  18. Liu CJ, Cheng JS, Chen YC, Huang YH, Yen RF. A performance comparison of novel cadmium-zinc-telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Ann Nucl Med. 2015;29:342–50.

    Article  PubMed  Google Scholar 

  19. Okano N, Osawa I, Tsuchihashi S, Takahashi M, Niitsu M, Matsunari I. High-speed scanning of planar images showing (123)I-MIBG uptake using a whole-body CZT camera: A phantom and clinical study. EJNMMI Res. 2019;9:22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yamada Y, Nakano S, Gatate Y, Okano N, Muramatsu T, Nishimura S, et al. Feasibility of simultaneous (99m)Tc-tetrofosmin and (123)I-BMIPP dual-tracer imaging with cadmium-zinc-telluride detectors in patients undergoing primary coronary intervention for acute myocardial infarction. J Nucl Cardiol. 2021;28:187–95.

    Article  PubMed  Google Scholar 

  21. Rogasch JMM BS, Grosser OS, et al. Feasibility of iodine-123-mIBG SPECT/CT quantification in neuroblastoma using CZT and NaI detectors. Research Square. 2020. https://doi.org/10.21203/rs.3.rs-31865/v1

  22. Sordo SD, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors (Basel). 2009;9:3491–526.

    Article  PubMed  Google Scholar 

  23. Ko T, Utanohara Y, Suzuki Y, Kurihara M, Iguchi N, Umemura J, et al. A preliminary feasibility study of simultaneous dual-isotope imaging with a solid-state dedicated cardiac camera for evaluating myocardial perfusion and fatty acid metabolism. Heart Vessels. 2016;31:38–45.

    Article  PubMed  Google Scholar 

  24. Kobayashi M, Matsunari I, Nishi K, Mizutani A, Miyazaki Y, Ogai K, et al. Simultaneous acquisition of (99m)Tc- and (123)I-labeled radiotracers using a preclinical SPECT scanner with CZT detectors. Ann Nucl Med. 2016;30:263–71.

    Article  CAS  PubMed  Google Scholar 

  25. Tshori S, Livschitz S, Volodarsky I, Goland S, Shimoni S, Fabrikant J et al. Transthyretin cardiac amyloidosis scintigraphy using planar D-SPECT on dedicated cardiac CZT camera. J Nucl Cardiol. 2022;29:1995–2000.

  26. Agostini D, Marie PY, Ben-Haim S, Rouzet F, Songy B, Giordano A, et al. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: A review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging. 2016;43:2423–32.

    Article  CAS  PubMed  Google Scholar 

  27. Lima R, Peclat T, Soares T, Ferreira C, Souza AC, Camargo G. Comparison of the prognostic value of myocardial perfusion imaging using a CZT-SPECT camera with a conventional anger camera. J Nucl Cardiol. 2017;24:245–51.

    Article  PubMed  Google Scholar 

  28. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging. 2010;37:1887–902.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gimelli A, Liga R, Bertasi M, Kusch A, Marzullo P. Head-to-head comparison of a CZT-based all-purpose SPECT camera and a dedicated CZT cardiac device for myocardial perfusion and functional analysis. J Nucl Cardiol. 2021;28:1323–30.

    Article  PubMed  Google Scholar 

  30. Deshayes E, Fersing C, Hebert K, Bardies M, Kotzki PO, Santoro L. Whole body planar and 3D quantitative imaging after (177)Lu-DOTATATE on CZT SPECT/CT device with MEHRS collimator. First report Hell J Nucl Med. 2021;24:165–6.

    PubMed  Google Scholar 

  31. Gelfand MJ, Parisi MT, Treves ST, Reduction PNMD, W. Pediatric radiopharmaceutical administered doses,. North American consensus guidelines. J Nucl Med. 2010;2011(52):318–22.

    Google Scholar 

  32. Oddstig J, Hedeer F, Jogi J, Carlsson M, Hindorf C, Engblom H. Reduced administered activity, reduced acquisition time, and preserved image quality for the new CZT camera. J Nucl Cardiol. 2013;20:38–44.

    Article  PubMed  Google Scholar 

  33. Takahashi Y, Miyagawa M, Nishiyama Y, Kawaguchi N, Ishimura H, Mochizuki T. Dual radioisotopes simultaneous SPECT of (99m)Tc-tetrofosmin and (123)I-BMIPP using a semiconductor detector. Asia Ocean J Nucl Med Biol. 2015;3:43–9.

    PubMed  PubMed Central  Google Scholar 

  34. Cherry SR, Sorenson JA, Phelps, ME. Physics in nuclear medicine. 4th ed. Philadelphia: Elsevier Saunders. 2012.

  35. Sharp SE, Gelfand MJ, Shulkin BL. Pediatrics: Diagnosis of neuroblastoma. Semin Nucl Med. 2011;41:345–53.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bella Yuzefovich and Shira Klang at GE Healthcare in Haifa, Israel, for their technical assistance and collaboration in developing acquisition and postprocessing parameters.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—NCN and AM; writing—original draft preparation, CS; resources—NS, JNS, MS, and ES; writing—review and editing—NCN, NS, ES, and AM; supervision—NCN. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nghi C. Nguyen.

Ethics declarations

Conflict of Interest

Natalie Shmuel is a clinical applications engineer, and Eli Stern is a research manager, both at GE Healthcare, Haifa, Israel. Cassidy Sweet, Jennifer N. Shoaf, Marcy Stoecklein, Ashok Muthukrishnan, and Nghi C. Nguyen declare that they have no conflict of interest.

Ethics Approval

Not applicable, as this is a pictorial review that is deemed exempt by the University of Pittsburgh Institutional Review Board.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweet, C., Shmuel, N., Shoaf, J.N. et al. A Pictorial Review of I-123 MIBG Imaging of Neuroblastoma Utilizing a State-of-the-Art CZT SPECT/CT System. Nucl Med Mol Imaging 58, 1–8 (2024). https://doi.org/10.1007/s13139-023-00825-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-023-00825-2

Keywords

Navigation