Skip to main content

Advertisement

Log in

Development of a Novel Imaging Agent for Determining Albumin Uptake in Solid Tumors

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the albumin-binding compound 111In-C4-DTPA as an imaging agent for the detection of endogenous albumin accumulation in tumors.

Methods

111In-C4-DTPA was injected in healthy nude mice for pharmacokinetic and biodistribution studies (10 min, 1, 6, 24, and 48 h, n = 4) and subsequently in tumor-bearing mice for single-photon emission computed tomography/X-ray-computed tomography (SPECT/CT) imaging studies. Four different human tumor xenograft models (LXFL529, OVXF899, MAXFTN401, and CXF2081) were implanted subcutaneously unilaterally or bilaterally (n = 4–8). After intravenous administration of 111In-C4-DTPA, SPECT/CT images were collected over 72 h at 4–6 time points. Additionally, gamma counting was performed for the blood, plasma, lungs, heart, liver, spleen, kidneys, muscle, and tumors at 72 h post-injection.

Results

111In-C4-DTPA bound rapidly to circulating albumin upon injection, and the radiolabeled albumin conjugate thus formed was stable in murine and human serum. SPECT/CT images demonstrated a time-dependent uptake with a maximum of 2.7–3.8% ID/cm3 in the tumors at approximately 24 h post-injection and mean tumor/muscle ratios in the range of 3.2–6.2 between 24 and 72 h post-injection. The kidneys and bladder were the predominant elimination organs. Gamma counting at 72 h post-injection showed 1.3–2.5% ID/g in the tumors and mean tumor/muscle ratios in the range of 4.9–9.4.

Conclusion

111In-C4-DTPA bound rapidly to circulating albumin upon injection and showed time-dependent uptake in the tumors demonstrating a potential for clinical application as a companion imaging diagnostic for albumin-binding anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kratz F, Muller I, Ryppa C, Warnecke A. Prodrug strategies in anticancer chemotherapy. ChemMedChem. 2008;3:20–53.

    Article  CAS  PubMed  Google Scholar 

  2. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132:171–83.

    Article  CAS  PubMed  Google Scholar 

  3. Matsumura Y, Maeda HA. New concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  4. Merlot A, Kalinowski D, Richardson D. Unraveling the mysteries of serum albumin-more than just a serum protein. Front Physiol. 2014;5:299.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kratz F, Mueller-Driver R, Hofmann I, Drevs J, Unger CA. Novel macromolecular prodrug concept exploiting endogenous serum albumin as a drug carrier for cancer chemotherapy. J Med Chem. 2000;43:1253–6.

    Article  CAS  PubMed  Google Scholar 

  6. Kratz F, Warnecke A, Scheuermann K, Stockmar C, Schwab J, Lazar P, et al. Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives: improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound. J Med Chem. 2002;45:5523–33.

    Article  CAS  PubMed  Google Scholar 

  7. Mansour A, Drevs J, Esser N, Hamada F, Badary O, Unger C, et al. A new approach for the treatment of malignant melanoma: enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Res. 2003;63:4062–6.

    CAS  PubMed  Google Scholar 

  8. Kratz F. DOXO-EMCH (INNO-206): the first albumin-binding prodrug of doxorubicin to enter clinical trials. Expert Opin Investig Drugs. 2007;16:855–66.

    Article  CAS  PubMed  Google Scholar 

  9. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 a resolution. Protein Eng. 1999;12:439–46.

    Article  CAS  PubMed  Google Scholar 

  10. Chawla S, Ganjoo K, Schuetze S, Papai Z, Tine BV, Choy E, et al. Phase III study of aldoxorubicin vs Investigators’ choice as treatment for relapsed/refractory soft tissue sarcomas. J Clin Oncol. 2017;35:11000.

    Article  Google Scholar 

  11. Chawla S, Papai Z, Mukhametshina G, Sankhala K, Vasylyev L, Fedenko A, et al. First-line aldoxorubicin vs doxorubicin in metastatic or locally advanced unresectable soft-tissue sarcoma: a phase 2b randomized clinical trial. JAMA Oncol 2015;1:1272–1280.

  12. Bianchi P, Villa G, Buffoni F, Agnese G, Gipponi M, Costa R, et al. Different sites and modes of tracer injection for mapping the sentinel lymph node in patients with breast cancer. Tumori. 2000;86:307–8.

    Article  CAS  PubMed  Google Scholar 

  13. Maccauro M, Villano C, Aliberti G, Ferrari L, Castellani M, Patuzzo R, et al. Lymphoscintigraphy with intraoperative gamma probe sentinel node detection: clinical impact in patients with head and neck melanomas. Q J Nucl Med Mol Imaging. 2005;49:245–51.

    CAS  PubMed  Google Scholar 

  14. Volkert W, Hoffman T. Therapeutic radiopharmaceuticals. Chem Rev. 1999;99:2269–92.

    Article  CAS  PubMed  Google Scholar 

  15. Wangler C, Buchmann I, Eisenhut M, Haberkorn U, Mier W. Radiolabeled peptides and proteins in cancer therapy. Protein Pept Lett. 2007;14:273–9.

    Article  PubMed  Google Scholar 

  16. Sugiura G, Kuhn H, Sauter M, Haberkorn U, Mier W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules. 2014;19:2135–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmitt-Willich H, Brehm M, CL Ewers CL, Michl G, Muller-Fahrnow A, Petrov O, et al. Synthesis and physicochemical characterization of a new gadolinium chelate: the liver-specific magnetic resonance imaging contrast agent Gd-EOB-DTPA. Inorg Chem. 1999;38:1134–44.

    Article  CAS  PubMed  Google Scholar 

  18. Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl. 2006;45:1198–215.

    Article  CAS  PubMed  Google Scholar 

  19. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  Google Scholar 

  20. Babson A, Winnick T. Protein transfer in tumor-bearing rats. Cancer Res. 1954;14:606–11.

    CAS  PubMed  Google Scholar 

  21. Kratz F, Beyer U. Serum proteins as drug carriers of anticancer agents: a review. Drug Deliv. 1998;5:281–99.

    Article  CAS  PubMed  Google Scholar 

  22. Sinn H, Schrenk H, Friedrich E, Schilling U, Maier-Borst W. Design of compounds having an enhanced tumour uptake, using serum albumin as a carrier. Part I. Int J Rad Appl Instrum B. 1990;17:819–27.

    Article  CAS  PubMed  Google Scholar 

  23. Schilling U, Friedrich E, Sinn H, Schrenk H, Clorius J, Maier-Borst W. Design of compounds having enhanced tumour uptake, using serum albumin as a carrier-part II. In vivo studies. Int J Rad Appl Instrum B. 1992;19:685–95.

    Article  CAS  PubMed  Google Scholar 

  24. Wunder A, Stehle G, Sinn H, Schrenk H, Hoffbiederbeck D, Bader F, et al. Enhanced albumin uptake by rat tumors. Int J Oncol. 1997;11:497–507.

    CAS  PubMed  Google Scholar 

  25. Haubner R, Schmid A, Maurer A, Rangger C, Roig L, Pichler B, et al. [(68)Ga]NOTA-galactosyl human serum albumin: a tracer for liver function imaging with improved stability. Mol Imaging Biol. 2017;19:723–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Kratz.

Ethics declarations

Conflict of Interest

Steffen Daum, Johannes Pall Magnusson, Lara Pes, Javier Garcia Fernandez, Serghei Chercheja, Federico Medda, Friederike Inga Nollmann, Stephan David Koester, Patricia Perez Galan, Anna Warnecke, Khalid Abu Ajaj, and Felix Kratz declare no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

The institutional review board of our institute approved this retrospective study, and the requirement to obtain informed consent was waived.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Synthesis and lyophilization protocol for the maleimide-bearing DTPA chelating agent, C4-DTPA and the albumin conjugate, C4-DTPA-Albumin; radiolabeling and radiochemical purity determination of 111In-C4-DTPA; albumin-binding properties of 111In-C4-DTPA in human and murine serum; 2D SPECT/CT data of all experiments are depicted in the Supplementary Material.

ESM 1

(DOCX 29015 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daum, S., Magnusson, J.P., Pes, L. et al. Development of a Novel Imaging Agent for Determining Albumin Uptake in Solid Tumors. Nucl Med Mol Imaging 53, 189–198 (2019). https://doi.org/10.1007/s13139-019-00587-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-019-00587-w

Keywords

Navigation