Skip to main content
Log in

Effects of temperature- and pressure-dependent viscosity and internal heating on mantle convection

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

A mathematical model is considered for Rayleigh–Bénard convection of mantle where the viscosity depends strongly on both temperature and pressure defined in an Arrhenius form. The model is solved numerically for extremely large viscosity variations across a unit aspect ratio cell using a modified cut-off viscosity law, and steady solutions are obtained. The aim is to investigate the convection pattern with internal heating at a very high viscosity variation in the presence of high Rayleigh number. The study also investigates the relation between temperature dependent parameter and pressure dependent parameter in a basally heated convection cell. The numerical simulation is performed using the finite element method based PDE solver and the results are presented through figures, tables and graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The data is generated through numerical simulation. No available data repository has been used for this research.

References

  • Ammann, M., Brodholt, J., Wookey, J., Dobson, D.: First-principles constraints on diffusion in lower-mantle minerals and a weak ${\text{ d }}^{\prime \prime }$ layer. Nature 465(7297), 462–465 (2010)

    Article  Google Scholar 

  • Bercovici, D., Schubert, G., Glatzmaier, G.: Influence of heating mode on three-dimensional mantle convection. Geophys. Res. Lett. 16(7), 617–620 (1989)

    Article  Google Scholar 

  • Bercovici, D., Ricard, Y., Richards, M.A.: The relation between mantle dynamics and plate tectonics: a primer. Geophys. Monogr. Am. Geophys. Union 121, 5–46 (2000)

    Google Scholar 

  • Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch, M., Marquart, G., et al.: A benchmark comparison for mantle convection codes. Geophys. J. Int. 98(1), 23–38 (1989)

    Article  Google Scholar 

  • Bunge, H.P., Richards, M.A., Baumgardner, J.R.: Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379(6564), 436–438 (1996)

    Article  Google Scholar 

  • Bunge, H.P., Richards, M.A., Baumgardner, J.R.: A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: effects of depth-dependent viscosity, heating mode, and an endothermic phase change. J. Geophys. Res. Solid Earth 102(B6), 11991–12007 (1997)

    Article  Google Scholar 

  • Christensen, U.: Convection with pressure-and temperature-dependent non-Newtonian rheology. Geophys. J. Int. 77(2), 343–384 (1984a)

    Article  Google Scholar 

  • Christensen, U.: Heat transport by variable viscosity convection and implications for the earth’s thermal evolution. Phys. Earth Planet. Inter. 35(4), 264–282 (1984b)

  • Cserepes, L.: Effect of depth-dependent viscosity on the pattern of mantle convection. Geophys. Res. Lett. 20(19), 2091–2094 (1993)

    Article  Google Scholar 

  • Deschamps, F., Lin, J.R.: Stagnant lid convection in 3D-Cartesian geometry: scaling laws and applications to icy moons and dwarf planets. Phys. Earth Planet. Inter. 229, 40–54 (2014)

    Article  Google Scholar 

  • Doin, M.P., Fleitout, L., Christensen, U.: Mantle convection and stability of depleted and undepleted continental lithosphere. J. Geophys. Res. Solid Earth 102(B2), 2771–2787 (1997)

    Article  Google Scholar 

  • Dumoulin, C., Doin, M.P., Fleitout, L.: Heat transport in stagnant lid convection with temperature-and pressure-dependent Newtonian or non-Newtonian rheology. J. Geophys. Res. Solid Earth 104(B6), 12759–12777 (1999)

    Article  Google Scholar 

  • Fleitout, L., Yuen, D.A.: Steady state, secondary convection beneath lithospheric plates with temperature-and pressure-dependent viscosity. J. Geophys. Res. Solid Earth 89(B11), 9227–9244 (1984)

    Article  Google Scholar 

  • Fowler, A.: Fast thermoviscous convection. Stud. Appl. Math. 72(3), 189–219 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Fowler, A.C.: Mathematical Geoscience, vol. 36. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  • Fowler, A., Howell, P., Khaleque, T.S.: Convection of a fluid with strongly temperature and pressure dependent viscosity. Geophys. Astrophys. Fluid Dyn. 110(2), 130–165 (2016)

    Article  MathSciNet  Google Scholar 

  • Gurnis, M., Davies, G.F.: The effect of depth-dependent viscosity on convective mixing in the mantle and the possible survival of primitive mantle. Geophys. Res. Lett. 13(6), 541–544 (1986)

    Article  Google Scholar 

  • Haskell, N.A.: The viscosity of the asthenosphere. Am. J. Sci. 5(193), 22–28 (1937)

    Article  Google Scholar 

  • Houston, M., De Bremaecker, J.C.: Numerical models of convection in the upper mantle. J. Geophys. Res. 80(5), 742–751 (1975)

    Article  Google Scholar 

  • Huang, J., Zhong, S.: Sublithospheric small-scale convection and its implications for the residual topography at old ocean basins and the plate model. J. Geophys. Res. Solid Earth 110(B5), B05404-1 (2005)

    Article  Google Scholar 

  • Huang, J., Zhong, S., van Hunen, J.: Controls on sublithospheric small-scale convection. J. Geophys. Res. Solid Earth 108(B8), 2405 (2003)

    Article  Google Scholar 

  • Ito, E., Katsura, T.: A temperature profile of the mantle transition zone. Geophys. Res. Lett. 16(5), 425–428 (1989)

    Article  Google Scholar 

  • Jarvis, G.T., Peltier, W.: Mantle convection as a boundary layer phenomenon. Geophys. J. R. Astron. Soc. 68(2), 389–427 (1982)

    Article  MATH  Google Scholar 

  • Jimenez, J., Zufiria, J.A.: A boundary-layer analysis of Rayleigh–Bénard convection at large Rayleigh number. J. Fluid Mech. 178, 53–71 (1987)

    Article  MATH  Google Scholar 

  • Kameyama, M., Ogawa, M.: Transitions in thermal convection with strongly temperature-dependent viscosity in a wide box. Earth Planet. Sci. Lett. 180(3–4), 355–367 (2000)

    Article  Google Scholar 

  • Karato Si, W.P.: Rheology of the upper mantle: a synthesis. Science 260(5109), 771–778 (1993)

    Article  Google Scholar 

  • Khaleque, T.S., Fowler, A.C., Howell, P., Vynnycky, M.: Numerical studies of thermal convection with temperature-and pressure-dependent viscosity at extreme viscosity contrasts. Phys. Fluids 27(7), 076603 (2015)

    Article  MATH  Google Scholar 

  • King, S.D.: On topography and geoid from 2-D stagnant lid convection calculations. Geochem. Geophys. Geosyst. 10(3), Q03002 (2009)

    Article  Google Scholar 

  • King, S.D.: Mantle convection, the asthenosphere, and earth’s thermal history. Geol. Soc. Am. Spec. Pap. 514, SPE514-07 (2015)

  • Kirby, S.H.: Rheology of the lithosphere. Rev. Geophys. 21(6), 1458–1487 (1983)

    Article  Google Scholar 

  • Koglin, D.E., Jr., Ghias, S.R., King, S.D., Jarvis, G.T., Lowman, J.P.: Mantle convection with reversing mobile plates: a benchmark study. Geochem. Geophys. Geosyst. 6(9), Q09003 (2005)

    Article  Google Scholar 

  • Korenaga, J.: Pitfalls in modeling mantle convection with internal heat production. J. Geophys. Res. Solid Earth 122(5), 4064–4085 (2017)

    Article  Google Scholar 

  • Larsen, T.B., Malevsky, A.V., Yuen, D.A., Smedsmo, J.L.: Temperature-dependent Newtonian and non-Newtonian convection: implications for lithospheric processes. Geophys. Res. Lett. 20(23), 2595–2598 (1993)

    Article  Google Scholar 

  • Leitch, A., Yuen, D., Sewell, G.: Mantle convection with internal heating and pressure-dependent thermal expansivity. Earth Planet. Sci. Lett. 102(2), 213–232 (1991)

    Article  Google Scholar 

  • Limare, A., Fourel, L., Surducan, E., Neamtu, C., Surducan, V., Vilella, K., Farnetani, C., Kaminski, E., Jaupart, C.: Microwave-based, internally-heated convection: new perspectives for the heterogeneous case. In: AIP Conference Proceedings, vol. 1700, p. 040001. AIP Publishing LLC (2015)

  • McNamara, A.K., Zhong, S.: Degree-one mantle convection: dependence on internal heating and temperature-dependent rheology. Geophys. Res. Lett. 32(1), L01301-1 (2005)

    Article  Google Scholar 

  • Moresi, L.N., Solomatov, V.: Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7(9), 2154–2162 (1995)

    Article  MATH  Google Scholar 

  • Morris, S., Canright, D.: A boundary-layer analysis of Benard convection in a fluid of strongly temperature-dependent viscosity. Phys. Earth Planet. Inter. 36(3–4), 355–373 (1984)

    Article  Google Scholar 

  • Olson, P., Corcos, G.: A boundary layer model for mantle convection with surface plates. Geophys. J. R. Astron. Soc. 62(1), 195–219 (1980)

    Article  MATH  Google Scholar 

  • Parmentier, E., Turcotte, D., Torrance, K.: Studies of finite amplitude non-Newtonian thermal convection with application to convection in the earth’s mantle. J. Geophys. Res. 81(11), 1839–1846 (1976)

  • Reese, C., Solomatov, V., Baumgardner, J.: Scaling laws for time-dependent stagnant lid convection in a spherical shell. Phys. Earth Planet. Inter. 149(3–4), 361–370 (2005)

    Article  Google Scholar 

  • Roberts, G.: Fast viscous convection. Geophys. Astrophys. Fluid Dyn. 8(1), 197–233 (1977)

    Article  MATH  Google Scholar 

  • Schubert, G., Turcotte, D.L., Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  • Shahraki, M., Schmeling, H.: Plume-induced geoid anomalies from 2D axi-symmetric temperature-and pressure-dependent mantle convection models. J. Geodyn. 59, 193–206 (2012)

    Article  Google Scholar 

  • Solomatov, V., Moresi, L.N.: Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys. Res. Lett. 24(15), 1907–1910 (1997)

    Article  Google Scholar 

  • Solomatov, V.S., Moresi, L.N.: Scaling of time-dependent stagnant lid convection: application to small-scale convection on earth and other terrestrial planets. J. Geophys. Res. Solid Earth 105(B9), 21795–21817 (2000)

    Article  Google Scholar 

  • Stein, C., Lowman, J., Hansen, U.: The influence of mantle internal heating on lithospheric mobility: implications for super-earths. Earth Planet. Sci. Lett. 361, 448–459 (2013)

    Article  Google Scholar 

  • Stemmer, K., Harder, H., Hansen, U.: A new method to simulate convection with strongly temperature-and pressure-dependent viscosity in a spherical shell: applications to the earth’s mantle. Phys. Earth Planet. Inter. 157(3–4), 223–249 (2006)

  • Tackley, P.J., Ammann, M., Brodholt, J.P., Dobson, D.P., Valencia, D.: Mantle dynamics in super-earths: post-perovskite rheology and self-regulation of viscosity. Icarus 225(1), 50–61 (2013)

    Article  Google Scholar 

  • Travis, B., Olson, P.: Convection with internal heat sources and thermal turbulence in the earth’s mantle. Geophys. J. Int. 118(1), 1–19 (1994)

  • Turcotte, D., Schubert, G.: Application of Continuum Physics to Geological Problems. Wiley, New York (1982)

    Google Scholar 

  • Turcotte, D.L., Schubert, G.: Geodynamics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  • Turcotte, D., Oxburgh, E.: Finite amplitude convective cells and continental drift. J. Fluid Mech. 28(1), 29–42 (1967)

    Article  MATH  Google Scholar 

  • Van Heck, H., Tackley, P.: Plate tectonics on super-earths: equally or more likely than on earth. Earth Planet. Sci. Lett. 310(3–4), 252–261 (2011)

    Article  Google Scholar 

  • Yamazaki, D., Si, K.: Some mineral physics constraints on the rheology and geothermal structure of earth’s lower mantle. Am. Miner. 86(4), 385–391 (2001)

Download references

Acknowledgements

Tania S. Khaleque acknowledges the valuable suggestions from Professor A. C. Fowler, University of Oxford, U.K.

Funding

The author Tania S. Khaleque received a partial funding from the University Grants Commission-Dhaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania S. Khaleque.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest and they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Code availability

The code and data generated by COMSOL Multiphysics can be provided if necessary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleque, T.S., Sayeed Motaleb, S.A. Effects of temperature- and pressure-dependent viscosity and internal heating on mantle convection. Int J Geomath 12, 23 (2021). https://doi.org/10.1007/s13137-021-00190-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-021-00190-2

Keywords

Mathematics Subject Classification

Navigation