Skip to main content
Log in

Smectite formation in metalliferous sediments near the East Pacific Rise at 13°N

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

A 43 cm long E271 sediment core collected near the East Pacific Rise (EPR) at 13°N were studied to investigate the origin of smectite for understanding better the geochemical behavior of hydrothermal material after deposition. E271 sediments are typical metalliferous sediments. After removal of organic matter, carbonate, biogenic opal, and Fe-Mn oxide by a series of chemical procedures, clay minerals (<2 μm) were investigated by X-ray diffraction, chemical analysis and Si isotope analysis. Due to the influence of seafloor hydrothermal activity and close to continent, the sources of clay minerals are complex. Illite, chlorite and kaolinite are suggested to be transported from either North or Central America by rivers or winds, but smectite is authigenic. It is enriched in iron, and its contents are highest in clay minerals. Data show that smectite is most likely formed by the reaction of hydrothermal Fe-oxyhydroxide with silica and seawater in metalliferous sediments. The Si that participates in this reaction may be derived from siliceous microfossils (diatoms or radiolarians), hydrothermal fluids, or detrital mineral phases. And their δ30Si values are higher than those of authigenic smectites, which implies that a Si isotope fractionation occurs during the formation because of the selective absorption of light Si isotopes onto Feoxyhydroxides. Sm/Fe mass ratios (a proxy for overall REE/Fe ratio) in E271 clay minerals are lower than those in metalliferous sediments, as well as distal hydrothermal plume particles and terrigenous clay minerals. This result suggests that some REE are lost during the smectite formation, perhaps because their large ionic radii of REE scavenged by Fe-oxyhydroxides preclude substitution in either tetrahedral or octahedral lattice sites of this mineral structure, which decreases the value of metalliferous sediments as a potential resource for REE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt J C. 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Marine Geology, 81(1–4): 227–239

    Article  Google Scholar 

  • Alt J C, Lonsdale P, Haymon R, et al. 1987. Hydrothermal sulfide and oxide deposits on seamounts near 21°N, East Pacific Rise. Geological Society of America Bulletin, 98(2): 157–168

    Article  Google Scholar 

  • Antrim L, Sempere J C, Macdonald K C, et al. 1988. Fine scale study of a small overlapping spreading center system at 12°54’N on the East Pacific Rise. Marine Geophysical Researches, 9(2): 115–130

    Article  Google Scholar 

  • Ballard R D, Hekinian R, Francheteau J. 1984. Geological setting of hydrothermal activity at 12°50’N on the East Pacific Rise: a submersible study. Earth and Planetary Science Letters, 69(1): 176–186

    Article  Google Scholar 

  • Banks H H Jr. 1972. Iron-rich saponite: additional data on samples dredged from the Mid-Atlantic Ridge, 22°N latitude. Smithsonian Contributions to the Earth Sciences, 9: 39–42

    Google Scholar 

  • Barrett T J, Friedrichsen H, Fleet A J. 1983. Elemental and stable isotopic composition of some metalliferous and pelagic sediments from the Galapagos mounds area, deep sea drilling project leg 70. In: Honnorez J, Von Herzen R P, eds. Initial Reports of the Deep Sea Drilling Project 70. Washington: U.S. Government Printing Office, 315–323

    Google Scholar 

  • Barrett T J, Taylor P N, Jarvis I, et al. 1986. Pb and Sr isotope and rare earth element composition of selected metalliferous sediments from sites 597 to 601, Deep Sea Drilling Project Leg 92. In: Leinen M, Rea D K, eds. Initial Reports of the Deep Sea Drilling Project 92. Washington: U.S. Government Printing Office, 391–407

    Google Scholar 

  • Basile-Doelsch I. 2006. Si stable isotopes in the earth’s surface: a review. Journal of Geochemical Exploration, 88(1–3): 252–256

    Article  Google Scholar 

  • Basile-Doelsch I, Meunier J D, Parron C. 2005. Another continental pool in the terrestrial silicon cycle. Nature, 433(7024): 399–402

    Article  Google Scholar 

  • Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76(7): 803–832

    Article  Google Scholar 

  • Bischoff J L. 1972. A ferroan nontronite from the Red Sea geothermal system. Clays and Clay Minerals, 20(4): 217–223

    Article  Google Scholar 

  • Bonatti E, Kraemer T, Rydell H. 1972. Classification and genesis of submarine iron–manganese deposits. In: Horn D R, ed. Ferromanganese Deposits on the Ocean Floor. Washington D C: National Science Foundation, 149–166

    Google Scholar 

  • Boström K. 1973. The origin and fate of ferromanganoan active ridge sediments. Stockholm Contributions to Geology, 27(2): 149–243

    Google Scholar 

  • Buatier M D, Karpoff A M, Boni M, et al. 1994. Mineralogic and petrographic records of sediment-fluid interaction in the sedimentary sequence at Middle Valley, Juan de Fuca Ridge, Leg 139. In: Mottl M J, Davis E E, Fisher A T, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 139. Ocean Drilling Program: College Station, TX, 133–154

    Google Scholar 

  • Buatier M D, Karpoff A M, Charpentier D. 2002. Clays and zeolite authigenesis in sediments from the flank of the Juan de Fuca Ridge. Clay Minerals, 37(1): 143–155

    Article  Google Scholar 

  • Buatier M D, Monnin C, Früh-Green G L, et al. 2001. Fluid-sediment interactions related to hydrothermal circulation in the Eastern Flank of the Juan de Fuca Ridge. Chemical Geology, 175(3–4): 343–360

    Article  Google Scholar 

  • Butuzova G Y, Drits V A, Lisistyana N A, et al. 1979. Formation dynamics of clay minerals in ore-bearing sediments in the Atlantis II basin, Red Sea. Lithol Miner Resour, 14: 23–32

    Google Scholar 

  • Carey S, Olsen R, Bell K L C, et al. 2016. Hydrothermal venting and mineralization in the crater of Kick’em Jenny submarine volcano, Grenada (Lesser Antilles). Geochemistry, Geophysics, Geosystems, 17(3): 1000–1019

    Article  Google Scholar 

  • Chamley H. 1989. Clay Sedimentology. Berlin, Heidelberg: Springer- Verlag, 259–289

    Book  Google Scholar 

  • Charlou J L, Bougault H, Appriou P, et al. 1991. Water column anomalies associated with hydrothermal activity between 11°40’ and 13°N on the East Pacific Rise: discrepancies between tracers. Deep Sea Research Part A. Oceanographic Research Papers, 38(5): 569–596

    Article  Google Scholar 

  • Chester R, Hughes M J. 1967. A Chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chemical Geology, 2: 249–262

    Article  Google Scholar 

  • Choukroune P, Francheteau J, Hekinian R. 1984. Tectonics of the East Pacific Rise near 12°50’N: a submersible study. Earth and Planetary Science Letters, 68(1): 115–127

    Article  Google Scholar 

  • Cole T G. 1985. Composition, oxygen isotope geochemistry and origin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific. Geochimica et Cosmochimica Acta, 49(1): 221–235

    Article  Google Scholar 

  • Cole T G. 1988. The nature and origin of smectite in the Atlantis II Deep, Red Sea. The Canadian Mineralogist, 26(3): 755–763

    Google Scholar 

  • Cole T G, Shaw H F. 1983. The nature and origin of authigenic smectites in some recent marine sediments. Clay Minerals, 18(3): 239–252

    Article  Google Scholar 

  • Crane K. 1987. Structural evolution of the east pacific rise axis from 13°10’N to 10°35’N: interpretations from SeaMARC I data. Tectonophysics, 136(1–2): 65–124

    Article  Google Scholar 

  • Cuadros J, Dekov V M, Arroyo X, et al. 2011. Smectite formation in submarine hydrothermal sediments: samples from the HMS challenger expedition (1872–1876). Clays and Clay Minerals, 59(2): 147–164

    Article  Google Scholar 

  • Davydov M P, Sudarikov S M, Aleksandrov P A, et al. 2002. Geochemistry of the metalliferous sediments of hydrothermal fields of the east pacific rise, 11°30’–13°N. Part 1. Geochemistry of Holocene Sediments. Geochemistry International, 40(3): 279–298

    Google Scholar 

  • De Baar H J W, Bacon M P, Brewer P G, et al. 1985. Rare earth elements in the pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta, 49(9): 1943–1959

    Article  Google Scholar 

  • De La Rocha C L, Brzezinski M A, DeNiro M J, et al. 1998. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature, 395(6703): 680–683

    Article  Google Scholar 

  • De La Rocha C L, Brzezinski M A, DeNiro M J. 2000. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochimica et Cosmochimica Acta, 64(14): 2467–2477

    Article  Google Scholar 

  • Dekov V M, Cuadros J, Kamenov G D, et al. 2010. Metalliferous sediments from the H. M. S. Challenger voyage (1872–1876). Geochimica et Cosmochimica Acta, 74(17): 5019–5038

    Article  Google Scholar 

  • Dekov V M, Cuadros J, Shanks W C, et al. 2008. Deposition of talc-kerolite- smectite-smectite at seafloor hydrothermal vent fields: evidence from mineralogical, geochemical and oxygen isotope studies. Chemical Geology, 247(1–2): 171–194

    Article  Google Scholar 

  • Demarest M S, Brzezinski M A, Beucher C P. 2009. Fractionation of silicon isotopes during biogenic silica dissolution. Geochimica et Cosmochimica Acta, 73(19): 5572–5583

    Article  Google Scholar 

  • Ding Tiping, Jiang Shaoyong, Wan Defang, et al. 1996. Silicon Isotope Geochemistry. Beijing: Geological Publishing House

    Google Scholar 

  • Douthitt C B. 1982. The geochemistry of the stable isotopes of silicon. Geochimica et Cosmochimica Acta, 46(8): 1449–1458

    Article  Google Scholar 

  • Douville E, Bienvenu P, Charlou J L, et al. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5): 627–643

    Article  Google Scholar 

  • Dunk R M, Mills R A. 2006. The impact of oxic alteration on plumederived transition metals in ridge flank sediments from the East Pacific Rise. Marine Geology, 229(3–4): 133–157

    Article  Google Scholar 

  • Dymond J, Eklund W. 1978. A microprobe study of metalliferous sediment components. Earth and Planetary Science Letters, 40(2): 243–251

    Article  Google Scholar 

  • Fouquet Y, Auclair G, Cambon P, et al. 1988. Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific Rise. Marine Geology, 84(3–4): 145–178

    Article  Google Scholar 

  • Francheteau J, Ballard R D. 1983. The East Pacific Rise near 21°N, 13°N and 20°S: inferences for along-strike variability of axial processes of the mid-ocean ridge. Earth and Planetary Science Letters, 64(1): 93–116

    Article  Google Scholar 

  • Gablina I F, Popova E A, Sadchikova T A, et al. 2014. Hydrothermal metasomatic alteration of carbonate bottom sediments in the Ashadze-1 field (13°N Mid-Atlantic Ridge). Geology of Ore Deposits, 56(5): 357–379

    Article  Google Scholar 

  • Georg R B, Zhu C, Reynolds B C, et al. 2009. Stable silicon isotopes of groundwater, feldspars, and clay coatings in the Navajo Sandstone aquifer, Black Mesa, Arizona, USA. Geochimica et Cosmochimica Acta, 73(8): 2229–2241

    Article  Google Scholar 

  • German C R, Colley S, Palmer M R, et al. 2002. Hydrothermal plumeparticle fluxes at 13°N on the East Pacific Rise. Deep Sea Research Part I: Oceanographic Research Papers, 49(11): 1921–1940

    Article  Google Scholar 

  • German C R, Klinkhammer G P, Edmond J M, et al. 1990. Hydrothermal scavenging of rare-earth elements in the ocean. Nature, 345(6275): 516–518

    Article  Google Scholar 

  • Griffin J J, Windom H, Goldberg E D. 1968. The distribution of clay minerals in the world ocean. Deep Sea Research and Oceanographic Abstracts, 15(4): 433–459

    Article  Google Scholar 

  • Grill E V, Chase R L, MacDonald R D, et al. 1981. A hydrothermal deposit from explorer ridge in the northeast Pacific Ocean. Earth and Planetary Science Letters, 52(1): 142–150

    Article  Google Scholar 

  • Gurvich E G. 2006. Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation. Berlin: Springer, 1–126

    Google Scholar 

  • Haskin M A, Haskin L A. 1966. Rare earths in European shales: a redetermination. Science, 154(3748): 507–509

    Google Scholar 

  • Heath G R, Dymond J. 1977. Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep, and Central Basin, northwest Nazca plate. Geological Society of America Bulletin, 88(5): 723–733

    Article  Google Scholar 

  • Hein J R, Scholl D W. 1978. Diagenesis and distribution of late Cenozoic volcanic sediment in the southern Bering Sea. Geological Society of America Bulletin, 89(2): 197–210

    Article  Google Scholar 

  • Hein J R, Yeh H W, Alexander E. 1979. Origin of iron-rich montmorillonite from the manganese nodule belt of the north equatorial Pacific. Clays and Clay Minerals, 27(3): 185–194

    Article  Google Scholar 

  • Hekinian R, Fouquet Y. 1985. Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13 degrees N. Economic Geology, 80(2): 221–249

    Article  Google Scholar 

  • Hekinian R, Fevrier M, Avedik F, et al. 1983a. East Pacific Rise near 13°N: geology of new hydrothermal fields. Science, 219(4590): 1321–1324

    Article  Google Scholar 

  • Hekinian R, Fevrier M, Bischoff J L, et al. 1980. Sulfide deposits from the East Pacific Rise near 21°N. Science, 207(4438): 1433–1444

    Article  Google Scholar 

  • Hekinian R, Francheteau J, Renard V, et al. 1983b. Intense hydrothermal activity at the axis of the east pacific rise near 13°N: sumbersible witnesses the growth of sulfide chimney. Marine Geophysical Researches, 6(1): 1–14

    Article  Google Scholar 

  • Hoffert M, Karpoff A M, Schaaf A, et al. 1981. The sedimentary deposits of the tiki basin (south-east pacific) passage from carbonate oozes to “metalliferous sediments”. In: Lalou C, ed. Colloques Internationaux du Centre National de la Recherche Scientifique. Paris: CNRS, 289. 101–112

    Google Scholar 

  • Honnorez J, Karpoff A M, Trauth-Badaut D. 1983. Sedimentology, mineralogy, and geochemistry of green clay samples from the Galapagos hydrothermal mounds, holes 506, 506C, and 507D, deep sea drilling project leg 70 (preliminary data). In: Honnorez J, Von Herzen R P, eds. Initial Reports of the Deep Sea Drilling Project 70. Washington: U.S. Government Printing Office, 211–224

    Chapter  Google Scholar 

  • Hovan S A. 1995. Late Cenozoic atmospheric circulation intensity and climatic history recorded by eolian deposition in the eastern equatorial Pacific, Leg 138. In: Pisias N G, Mayer L A, Janecek T R, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 138. Ocean Drilling Program: College Station, TX, 615–625

    Google Scholar 

  • Huang Jie, Wan Shiming, Xiong Zhifang, et al. 2016. Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 871–881

    Article  Google Scholar 

  • Kadko D. 1985. Late Cenozoic sedimentation and metal deposition in the North Pacific. Geochimica et Cosmochimica Acta, 49(3): 651–661

    Article  Google Scholar 

  • Kato Y, Fujinaga K, Nakamura K, et al. 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, 4(8): 535–539

    Article  Google Scholar 

  • Klitgord K D, Mammerickx J. 1982. Northern East Pacific Rise: magnetic anomaly and bathymetric framework. Journal of Geophysical Research: Solid Earth, 87(B8): 6725–6750

    Article  Google Scholar 

  • Lackschewitz K S, Botz R, Garbe-Schönberg D, et al. 2006. Mineralogy and geochemistry of clay samples from active hydrothermal vents off the north coast of Iceland. Marine Geology, 225(1–4): 177–190

    Article  Google Scholar 

  • Lackschewitz K S, Singer A, Botz R, et al. 2000. Formation and transformation of clay minerals in the hydrothermal deposits of Middle Valley, Juan de Fuca Ridge, ODP Leg 169. Economic Geology, 95(2): 361–389

    Article  Google Scholar 

  • Lalou C, Brichet E, Hekinian R. 1985. Age dating of sulfide deposits from axial and off-axial structures on the East Pacific Rise near 12°50’N. Earth and Planetary Science Letters, 75(1): 59–71

    Article  Google Scholar 

  • Leinen M, Prospero J M, Arnold E, et al. 1994. Mineralogy of Aeolian dust reaching the North Pacific Ocean: 1. Sampling and analysis. Journal of Geophysical Research: Atmospheres, 99(D10): 21017–21023

    Article  Google Scholar 

  • Lisitzin A P, Bogdanov Y A, Mudmaa I O, et al. 1976. Metalliferous sediments and their genesis. In: Lisitzin A P, ed. Geological and Geophysical Research in the Southeast Pacific (in Russian). Moscow: Nauka, 289–379

    Google Scholar 

  • Liu Hanbin, Jin Guishan, Li Junjie, et al. 2013. Determination of stable isotope composition in uranium geological samples. World Nuclear Geoscience (in Chinese), 30(3): 174–179

    Google Scholar 

  • Liu Jihua, Shi Xuefa, Chen Lirong, et al. 2005. REE and εNd of clay fractions in sediments from the eastern Pacific Ocean: evidence for clay sources. Science in China Series D: Earth Sciences, 48(5): 701–712

    Article  Google Scholar 

  • Lyle M, Dymond J, Heath G R. 1977. Copper-nickel-enriched ferromanganese nodules and associated crusts from the Bauer Basin, northwest Nazca plate. Earth and Planetary Science Letters, 35(1): 55–64

    Article  Google Scholar 

  • McMillen K J, Enkeboll R H, Moore J C, et al. 1982. Sedimentation in different tectonic environments of the Middle America Trench, southern Mexico and Guatemala. Geological Society, London, Special Publications, 10(1): 107–119

    Article  Google Scholar 

  • McMurtry G M, Yeh H W. 1981. Hydrothermal clay mineral formation of East Pacific Rise and Bauer Basin sediments. Chemical Geology, 32(1–4): 189–205

    Article  Google Scholar 

  • Melson W G, Thompson G. 1973. Glassy abyssal basalts, Atlantic sea floor near St. Paul’s Rocks: petrography and composition of secondary clay minerals. Geological Society of America Bulletin, 84(2): 703–716

    Article  Google Scholar 

  • Mills R A, Elderfield H. 1995. Hydrothermal activity and the geochemistry of metalliferous sediment. In: Humphris S E, Zierenberg R A, Mullineaux L S, et al, eds. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington D C: American Geophysical Union, 392–407

    Google Scholar 

  • Miyoshi Y, Ishibashi J, Shimada K, et al. 2015. Clay minerals in an active hydrothermal field at Iheya-North-Knoll, Okinawa trough. Resource Geology, 65(4): 346–360

    Article  Google Scholar 

  • Murnane R, Clague D A. 1983. Nontronite from a low-temperature hydrothermal system on the Juan de Fuca Ridge. Earth and Planetary Science Letters, 65(2): 343–352

    Article  Google Scholar 

  • Opfergelt S, Cardinal D, André L, et al. 2010. Variations of δ30Si and Ge/Si with weathering and biogenic input in tropical basaltic ash soils under monoculture. Geochimica et Cosmochimica Acta, 74(1): 225–240

    Article  Google Scholar 

  • Opfergelt S, de Bournonville G, Cardinal D, et al. 2009. Impact of soil weathering degree on silicon isotopic fractionation during adsorption onto iron oxides in basaltic ash soils, Cameroon. Geochimica et Cosmochimica Acta, 73(24): 7226–7240

    Article  Google Scholar 

  • Percival J B, Ames D E. 1993. Clay mineralogy of active hydrothermal chimneys and an associated mound, middle valley, northern Juan de Fuca ridge. The Canadian Mineralogist, 31(4): 957–971

    Google Scholar 

  • Peter J M, Scott S D. 1988. Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California. The Canadian Mineralogist, 26(3): 567–587

    Google Scholar 

  • Pichevin L E, Reynolds B C, Ganeshram R S, et al. 2009. Enhanced carbon pump inferred from relaxation of nutrient limitation in the glacial ocean. Nature, 459(7250): 1114–1117

    Article  Google Scholar 

  • Piper D Z. 1974. Rare earth elements in the sedimentary cycle: a summary. Chemical Geology, 14(4): 285–304

    Article  Google Scholar 

  • Piper D Z, Heath G R. 1989. Hydrogenous sediment. In: Winterer E L, Hussong D M, Decker R W, eds. The Eastern Pacific Ocean and Hawaii. the Geology of North America, Vol. N. Boulder, Colorado: Geological Society of America, 337–345

    Google Scholar 

  • Rateev M A, Timofeev P P, Rengarten N V. 1980. Minerals of the clay fraction in Pliocene-Quaternary sediments of the east equatorial Pacific. In: Rosendahl B R, Hekinian R, Natland J H, et al, eds. Init Repts DSDP 54, Washington: U.S. Government Printing Office, 307–318

    Google Scholar 

  • Savage P S, Georg R B, Williams H M, et al. 2013. The silicon isotope composition of the upper continental crust. Geochimica et Cosmochimica Acta, 109: 384–399

    Article  Google Scholar 

  • Scheidegger K F, Stakes D S. 1977. Mineralogy, chemistry and crystallization sequence of clay minerals in altered tholeiitic basalts from the Peru Trench. Earth and Planetary Science Letters, 36(3): 413–422

    Article  Google Scholar 

  • Schumann D, Nagel U. 1982. Appendix I. X-ray mineralogical analysis. In: Initial Reports of the Deep Sea Drilling Project 66. Washington: U.S. Government Printing Office, 853–857

    Google Scholar 

  • Seyfried Jr W E, Shanks III W C, Dibble Jr W E. 1978. Clay mineral formation in DSDP Leg 34 basalt. Earth and Planetary Science Letters, 41(3): 265–276

    Article  Google Scholar 

  • Shao Hebin, Yang Shouye, Wang Quan, et al. 2015. Discriminating hydrothermal and terrigenous clays in the Okinawa Trough, East China Sea: evidences from mineralogy and geochemistry. Chemical Geology, 398: 85–96

    Article  Google Scholar 

  • Sharaskin A Y, Migdisov A A, Rostschina I A, et al. 1983. Major-and trace-element chemistry of hole 504B basalts and their alteration products (costa Rica rift, deep sea drilling project leg 70). In: Cann J R, Langseth M G, Honnorez J, et al, eds. Initial Reports Deep Sea Drilling Proiect 69. Washington: U.S. Government Printing Office, 775–789

    Google Scholar 

  • Sherrell R M, Field M P, Ravizza G. 1999. Uptake and fractionation of rare earth elements on hydrothermal plume particles at 9°45’N, East Pacific Rise. Geochimica et Cosmochimica Acta, 63(11–12): 1709–1722

    Article  Google Scholar 

  • Varela D E, Pride C J, Brzezinski M A. 2004. Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochemical Cycles, 18(1): GB1047

    Article  Google Scholar 

  • Wan Shiming, Li Anchun, Clift P D, et al. 2007. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3–4): 561–582

    Article  Google Scholar 

  • Wan Shiming, Li Anchun, Clift P D, et al. 2010. Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3 Ma. Marine Geology, 278(1–4): 115–121

    Article  Google Scholar 

  • Wang Xiaoyuan, Yin Xuebo, Zeng Zhigang, et al. 2014. High efficiency determination of trace elements in the geological samples. Journal of Chinese Mass Spectrometry Society (in Chinese), 35(1): 24–31

    Google Scholar 

  • Wu Li. 2012. Study on the metalliferous sediments near 13°N East Pacific Rise (in Chinese) [dissertation]. Qingdao: Institute of Oceanology Chinese Academy of Sciences

    Google Scholar 

  • Wu Shiying, Ding Tiping, Meng Xianwei, et al. 1997. Determination and geological implication of O-Si isotope of the sediment core in the CC area, the Pacific Ocean. Chinese Science Bulletin, 42(17): 1462–1465

    Article  Google Scholar 

  • Xue Fayu. 2003. Geochemical study of the sediments from two cores in the hydrothermal field on the East Pacific Rise (in Chinese) [dissertation]. Qingdao: Ocean University of China

    Google Scholar 

  • Yu Shaoxiong. 2010. Total organic carbon and nitrogen from metalliferous sediment on the flank of the East Pacific Rise 13°N (in Chinese) [dissertation]. Qingdao: Institute of Oceanology Chinese Academy of Sciences

    Google Scholar 

  • Yu Zenghui, Gao Yuhua, Zhai Shikui, et al. 2012. Resolving the hydrothermal signature by sequential leaching studies of sediments from the middle of the Okinawa Trough. Science China Earth Sciences, 55(4): 665–674

    Article  Google Scholar 

  • Yuan Chunwei, Zeng Zhigang, Yin Xuebo et al. 2007. Sediment geochemistry from 13°N East Pacific Rise hydrothermal field. Marine Geology & Quaternary Geology (in Chinese), 27(4): 45–53

    Google Scholar 

  • Zhang Guoliang, Zeng Zhigang, Yin Xuebo, et al. 2008. Periodical mixing of MORB magmas near East Pacific Rise 13°N: evidence from modeling and zoned plagioclase phenocrysts. Science in China Series D: Earth Sciences, 51(12): 1786–1801

    Article  Google Scholar 

  • Ziegler K, Chadwick O A, Brzezinski M A, et al. 2005. Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochimica et Cosmochimica Acta, 69(19): 4597–4610

    Article  Google Scholar 

  • Zierenberg R A, Shanks III W C. 1994. Sediment alteration associated with massive sulfide formation in Escanaba Trough, Gorda Ridge: the importance of seawater mixing and magnesium metasomatism. In: Morton J L, Zierenberg R A, Reiss C A, eds. Geologic, Hydrothermal, and Biologic Studies at Escanaba Trough, Gorda Ridge, Offshore Northern California. Commonwealth of Virginia: US Geological Survey, 2022: 257–277

    Google Scholar 

Download references

Acknowledgements

The authors thank the crew of the “DY105-14” cruise for their help with obtaining the samples, as well as the anonymous reviewers for their helpful and valuable comments. The authors are grateful to Li Anchun and Wan Shiming for their help in the X-ray diffraction determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zeng.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41325021; the National Basic Research Program (973 Program) of China under contract No. 2013CB429700; the National Special Fund for the 12th Five-Year Plan of COMRA under contract No. DY125-12-R-02; the Special Fund for the Taishan Scholar Program of Shandong Province under contract No. ts201511061; the AoShan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology under contract No. 2015ASTP-0S17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, K., Zeng, Z., Yin, X. et al. Smectite formation in metalliferous sediments near the East Pacific Rise at 13°N. Acta Oceanol. Sin. 37, 67–81 (2018). https://doi.org/10.1007/s13131-018-1265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-018-1265-6

Key words

Navigation