Skip to main content
Log in

Response of size-fractionated phytoplankton to environmental factors near the Changjiang Estuary

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Size-based partitioning of phytoplankton is a useful tool for monitoring key phytoplankton traits, and it provides a better understanding of phytoplankton dynamics. Our aim is to determine the variation in the different size classes of phytoplankton to the total phytoplankton biomass during the spring and autumn of 2010 and examine the relationship between phytoplankton size structure and environmental variables and zooplankton community structure near the Changjiang Estuary. In the spring, phytoplankton populations were predominantly consisted of nanophytoplankton throughout the study region. In the autumn, picophytoplankton and nanophytoplankton collectively dominated the phytoplankton community. A Pearson correlation analysis highlighted the role of temperature and trophic conditions on the contributions of nanophytoplankton and picophytoplankton. The grazing pressure exerted by mesozooplankton could have played an important role in determining the microphytoplankton community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agawin N R S, Duarte C M, Agustí S. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography, 45: 591–600, doi: 10.4319/lo.2000.45.3.0591

    Article  Google Scholar 

  • Banse K. 1992. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In: Falkowski P G, Woodhead A D, Vivirito K, eds. Primary Productivity and Biogeochemical Cycles in the Sea. Boston, MA: Springer, 409–440

    Google Scholar 

  • Bautista B, Harris R P. 1992. Copepod gut contents, ingestion rates and grazing impact on phytoplankton in relation to size structure of zooplankton and phytoplankton during a spring bloom. Marine Ecology Progress Series, 82: 41–50, doi: 10.3354/meps082041

    Article  Google Scholar 

  • Buchanan C, Lacouture R V, Marshall H G, et al. 2005. Phytoplankton reference communities for Chesapeake Bay and its tidal tributaries. Estuaries, 28: 138–159, doi: 10.1007/BF02732760

    Article  Google Scholar 

  • Butrón A, Iriarte A, Madariage I. 2009. Size–fractionated phytoplankton biomass, primary production and respiration in the Nervión–Ibaizabal Estuary: a comparison with other nearshore coastal and estuarine ecosystems from the Bay of Biscay. Continental Shelf Research, 29: 1088–1102, doi: 10.1016/j.csr.2008.11.013

    Article  Google Scholar 

  • Cermeño P, Marañón E, Rodríguez J, et al. 2005. Large–sized phytoplankton sustain higher carbon–specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Marine Ecology Progress Series, 297: 51–60, doi: 10.3354/meps297051

    Article  Google Scholar 

  • Cermeño P, Maraón E, Pérez V, et al. 2006. Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ría de Vigo, NW–Spain): Seasonal and short–time scale variability. Estuarine, Coastal and Shelf Science, 67: 251–266, doi: 10.1016/j.ecss.2005.11.027

    Article  Google Scholar 

  • Chai Chao, Yu Zhiming, Song Xiuxian, et al. 2006. The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China. Hydrobiologia, 563: 313–328, doi: 10.1007/s10750–006–0021–7

    Article  Google Scholar 

  • Chen Zhongyuan, Li Jiufa, Shen Huanting, et al. 2001. Yangtze River of China: historical analysis of discharge variability and sediment flux. Geomorphology, 41: 77–91, doi: 10.1016/S0169–555X(01)00106–4

    Article  Google Scholar 

  • Cloern J E, Dufford R. 2005. Phytoplankton community ecology: principles applied in San Francisco Bay. Marine Ecology Progress Series, 285: 11–28, doi: 10.3354/meps285011

    Article  Google Scholar 

  • Deng Chunmei, Yu Zhigang, Yao Peng, et al. 2008. Size–fractionated phytoplankton in the East China and southern Yellow Seas and its environmental factors in autumn 2000. Periodical of Ocean University of China (in Chinese), 38: 791–798

    Google Scholar 

  • Egge J K. 1998. Are diatoms poor competitors at low phosphate concentrations? Journal of Marine Systems, 16: 191–198, doi: 10.1016/S0924–7963(97)00113–9

    Article  Google Scholar 

  • Falkowski P G, Barber R T, Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281: 200–206, doi: 10.1126/science.281.5374.200

    Article  Google Scholar 

  • Fu Mingzhu, Wang Zongling, Li Yan, et al. 2009. Phytoplankton biomass size structure and its regulation in the southern Yellow Sea (China): seasonal variability. Continental Shelf Research, 29: 2178–2194, doi: 10.1016/j.csr.2009.08.010

    Article  Google Scholar 

  • Fu Tingting, Chen Baohong, Ji Weidong, et al. 2016. Size structure of phytoplankton community and its response to environmental factors in Xiamen Bay, China. Environmental Earth Sciences, 75(9): 734, doi: 10.1007/s12665–016–5552–2

    Article  Google Scholar 

  • Gaulke A K, Wetz M S, Paerl H W. 2010. Picophytoplankton: a major contributor to planktonic biomass and primary production in a eutrophic, river–dominated estuary. Estuarine, Coastal and Shelf Science, 90: 45–54, doi: 10.1016/j.ecss.2010.08.006

    Article  Google Scholar 

  • Giovanardi F, Vollenweider R A. 2004. Trophic conditions of marine coastal waters: experience in applying the trophic index TRIX to two areas of the Adriatic and Tyrrhenian Seas. Journal of Limnology, 63: 199–218, doi: 10.4081/jlimnol.2004.199

    Article  Google Scholar 

  • Hansen B W, Hygum B H, Brozek M, et al. 2000. Food web interactions in a Calanus finmarchicus dominated pelagic ecosystem–A mesocosm study. Journal of Plankton Research, 22: 569–588, doi: 10.1093/plankt/22.3.569

    Article  Google Scholar 

  • Hilligsøe K M, Richardson K, Bendtsen J, et al. 2011. Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2, flux. Deep–Sea Research: Part I. Oceanographic Research Papers, 58: 826–838, doi: 10.1016/j.dsr.2011.06.004

    Article  Google Scholar 

  • Huang Bangqin, Liu Yuan, Chen Jixin, et al. 2006. Temporal and spatial distribution of size–fractionized phytoplankton biomass in East China Sea and Huanghai Sea. Acta Oceanologica Sinica (in Chinese), 28: 156–164

    Google Scholar 

  • Huete–Ortega M, Calvo–Díaz A, Graña R, et al. 2011. Effect of environmental forcing on the biomass, production and growth rate of size–fractionated phytoplankton in the central Atlantic Ocean. Journal of Marine Systems, 88: 203–213, doi: 10.1016/j.jmarsys. 2011.04.007

    Article  Google Scholar 

  • Jia Haibo, Shao Junbo, Hu Haoyan, et al. 2014. Changes and reason analysis of phytoplankton community structure in the Yangtze Estuary and adjacent sea before and after the impoundment of the Three Gorges Dam. Marine Science Bulletin, 33: 305–314

    Google Scholar 

  • Jiao Nianzhi, Zhang Yao, Zeng Yonghui, et al. 2007. Ecological anomalies in the East China Sea: impacts of the Three Gorges Dam?. Water Research, 41: 1287–1293, doi: 10.1016/j.watres.2006. 11.053

    Article  Google Scholar 

  • Justić D, Rabalais N N, Turner R E, et al. 1995. Changes in nutrient structure of river–dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40: 339–356, doi: 10.1016/S0272–7714(05)80014–9

    Article  Google Scholar 

  • Kamykowski D, Zentara S J. 1986. Predicting plant nutrient concentrations from temperature and sigma–t, in the upper kilometer of the world ocean. Deep–Sea Research: Part A. Oceanographic Research Papers, 33: 89–105, doi: 10.1016/0198–0149(86)90109–3

    Google Scholar 

  • Kiørboe T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology, 29: 1–72, doi: 10.1016/S0065–2881(08)60129–7

    Article  Google Scholar 

  • Kulk G, de Vries P, van de Poll W H, et al. 2012. Temperature–dependent growth and photophysiology of prokaryotic and eukaryotic oceanic picophytoplankton. Marine Ecology Progress Series, 466: 43–55, doi: 10.3354/meps09898

    Article  Google Scholar 

  • Li Li, Lu Songhui, Jiang Tao, et al. 2013. Seasonal variation of size–fractionated phytoplankton in the Pearl River estuary. Chinese Science Bulletin, 58: 2303–2314, doi: 10.1007/s11434–013–5823–1

    Article  Google Scholar 

  • Li Chaolun, Luan Fenghe. 1998. A proliminary study on the distribution of size–fractionated chlorophyll–a in the euphotic zone of the East China Sea in spring. Marine Sciences (in Chinese), 22(4): 59–62

    Google Scholar 

  • Li W K W, McLaughlin F A, Lovejoy C, et al. 2009. Smallest algae thrive as the Arctic Ocean freshens. Science, 326: 539, doi: 10.1126/science.1179798

    Article  Google Scholar 

  • Li Hongmei, Tang Hongjie, Shi Xiaoyong, et al. 2014. Increased nutrient loads from the Changjiang (Yangtze) River have led to increased harmful algal blooms. Harmful Algae, 39: 92–101, doi: 10.1016/j.hal.2014.07.002

    Article  Google Scholar 

  • Lian Jijian, Yao Ye, Ma Chao, et al. 2014. Reservoir operation rules for controlling algal blooms in a tributary to the impoundment of Three Gorges Dam. Water, 6: 3200–3223, doi: 10.3390/w6103200

    Article  Google Scholar 

  • Lohrenz S E, Fahnenstiel G L, Redalje D G, et al. 1997. Variations in primary production of Northern Gulf of Mexico continental shelf waters linked to nutrient inputs from the Mississippi River. Marine Ecology Progress Series, 155: 45–54, doi: 10.3354/meps155045

    Article  Google Scholar 

  • Lu Douding, Goebel J, Qi Yuzao, et al. 2005. Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful Algae, 4: 493–505, doi: 10.1016/j.hal. 2004.08.015

    Article  Google Scholar 

  • Lu Douding, Qi Yuzao, Gu Haifeng, et al. 2014. Causative species of harmful algal blooms in Chinese coastal waters. Algological Studies, 145–146: 145–168

    Google Scholar 

  • Malone T C. 1980. Algal size. In: Morris I, ed. The Physiological Ecology of Phytoplankton. Oxford: Blackwell Scientific, 433–463

    Google Scholar 

  • Marañón E. 2015. Cell size as a key determinant of phytoplankton metabolism and community structure. Annual Review of Marine Science, 7: 241–264, doi: 10.1146/annurev–marine–010814–015955

    Article  Google Scholar 

  • Marañón E, Cermeño P, Rodríguez J, et al. 2007. Scaling of phytoplankton photosynthesis and cell size in the ocean. Limnology and Oceanography, 52: 2190–2198, doi: 10.4319/lo.2007. 52.5.2190

    Article  Google Scholar 

  • Marañón E, Holligan P M, Barciela R, et al. 2001. Patterns of phytoplankton size structure and productivity in contrasting openocean environments. Marine Ecology Progress Series, 216: 43–56, doi: 10.3354/meps216043

    Article  Google Scholar 

  • Mei Xuefei, Dai Zhijun, Van Gelder P H A J M, et al. 2015. Linking Three Gorges Dam and downstream hydrological regimes along the Yangtze River, China. Earth and Space Science, 2: 94–106, doi: 10.1002/ess2.v2.4

    Article  Google Scholar 

  • Morán X A G, López–Urrutia Á, Calvo–Díaz A, et al. 2010. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology, 16: 1137–1144, doi: 10.1111/gcb.2010.16.issue–3

    Article  Google Scholar 

  • Mousing E A, Ellegaard M, Richardson K. 2014. Global patterns in phytoplankton community size structure–evidence for a direct temperature effect. Marine Ecology Progress Series, 497: 25–38, doi: 10.3354/meps10583

    Article  Google Scholar 

  • Nejstgaard J C, Båmstedt U, Bagøien E, et al. 1995. Algal constraints on copepod grazing. Growth state, toxicity, cell size, and season as regulating factors. ICES Journal of Marine Science, 52: 347–357

    Google Scholar 

  • Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. New York: Pergamon Press, 22–25

    Book  Google Scholar 

  • Platt T, Silvert W. 1981. Ecology, physiology, allometry and dimensionality. Journal of Theoretical Biology, 93: 855–860, doi: 10.1016/0022–5193(81)90343–X

    Article  Google Scholar 

  • Polovina J J, Woodworth P A. 2012. Declines in phytoplankton cell size in the subtropical oceans estimated from satellite remotely–sensed temperature and chlorophyll, 1998–2007. Deep–Sea Research: Part II. Topical Studies in Oceanography, 77–80: 82–88, doi: 10.1016/j.dsr2.2012.04.006

    Google Scholar 

  • Qiu Dajun, Huang Liangmin, Zhang Jianlin, et al. 2010. Phytoplankton dynamics in and near the highly eutrophic Pearl River estuary, South China Sea. Continental Shelf Research, 30: 177–186, doi: 10.1016/j.csr.2009.10.015

    Article  Google Scholar 

  • Riegman R, Kuipers B R, Noordeloos A A M, et al. 1993. Size–differential control of phytoplankton and the structure of plankton communities. Netherlands Journal of Sea Research, 31: 255–265, doi: 10.1016/0077–7579(93)90026–O

    Article  Google Scholar 

  • State Oceanic Administration. 2008. GB 12763.4–2007 Specifications for Oceanographic Survey: Part 4. Survey of Chemical Parameters in Sea Water (in Chinese). Beijing: China Standard Press.

    Google Scholar 

  • Song Shuqun, Sun Jun, Luan Qingshan, et al. 2008. Size–fractionated phytoplankton biomass in autumn of the Changjiang (Yangtze) River Estuary and its adjacent waters after the Three Gorges Dam construction. Chinese Journal of Oceanology and Limnology, 26(3): 268–275, doi: 10.1007/s00343–008–0268–0

    Article  Google Scholar 

  • Tamigneaux E, Legendre L, Klein B, et al. 1999. Seasonal dynamics and potential fate of size–fractionated phytoplankton in a temperate nearshore environment (Western Gulf of St Lawrence, Canada). Estuarine, Coastal and Shelf Science, 48: 253–269, doi: 10.1006/ecss.1999.0416

    Article  Google Scholar 

  • Tan Yehui, Huang Liangmin, Chen Qingchao, et al. 2004. Seasonal variation in zooplankton composition and grazing impact on phytoplankton standing stock in the Pearl River estuary, China. Continental Shelf Research, 24: 1949–1968, doi: 10.1016/j.csr. 2004.06.018

    Article  Google Scholar 

  • Thomas C M, Perissinotto R, Kibirige I. 2005. Phytoplankton biomass and size structure in two South African eutrophic, temporarily open/closed estuaries. Estuarine, Coastal and Shelf Science, 65: 223–238, doi: 10.1016/j.ecss.2005.05.015

    Article  Google Scholar 

  • Utermöhl H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton–Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie, 9: 1–38

    Google Scholar 

  • Uye S. 1986. Impact of copepod grazing on the red–tide flagellate Chattonella antiqua. Marine Biology, 92: 35–43, doi: 10.1007/BF00392743

    Article  Google Scholar 

  • Vollenweider R A, Giovanardi F, Montanari G, et al. 1998. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics, 9: 329–357, doi: 10.1002/(ISSN)1099–095X

    Article  Google Scholar 

  • Wang Zhaoyu, Wang Jiangtao, Tan Liju. 2014. Variation in photosynthetic activity of phytoplankton during the spring algal blooms in the adjacent area of Changjiang River estuary. Ecological Indicators, 45: 465–473, doi: 10.1016/j.ecolind.2014.05.010

    Article  Google Scholar 

  • Yin Kedong, Zhang Jianlin, Qian Peiyuan, et al. 2004. Effect of wind events on phytoplankton blooms in the Pearl River estuary during summer. Continental Shelf Research, 24: 1909–1923, doi: 10.1016/j.csr.2004.06.015

    Article  Google Scholar 

  • Zhang J, Zhang Z F, Liu S M, et al. 1999. Human impacts on the large world rivers: would the Changjiang (Yangtze River) be an illustration?. Global Biogeochemical Cycles, 13: 1099–1105, doi: 10.1029/1999GB900044

    Article  Google Scholar 

  • Zhou Mingjiang, Shen Zhiliang, Yu Rencheng. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research, 28: 1483–1489, doi: 10.1016/j.csr.2007.02.009

    Article  Google Scholar 

  • Zhou Mingjiang, Yan Tian, Zou Jingzhong. 2003. Preliminary analysis of the characteristics of red tide areas in Changjiang River Estuary and its adjacent sea. Chinese Journal of Applied Ecology (in Chinese), 14: 1031–1038

    Google Scholar 

  • Zhou Weihua, Yin Kedong, Long Aimin, et al. 2012. Spatial–temporal variability of total and size–fractionated phytoplankton biomass in the Yangtze River estuary and adjacent East China Sea coastal waters, China. Aquatic Ecosystem Health and Management, 15: 200–209, doi: 10.1080/14634988.2012.688727

    Article  Google Scholar 

  • Zhou Mingjiang, Zhu Mingyuan, Zhang Jing. 2001. Status of harmful algal blooms and related research activities in China. Chinese Bulletin of Life Sciences (in Chinese), 13(2): 54–59, 53

    Google Scholar 

Download references

Acknowledgements

We acknowledge the captain and crew of R/V Zhe Hai Huan Jian for their help in sampling and sample processing. We thank the Second Institute of Oceanography, Ministry of Natural Resources of China, the East China Sea Fisheries Research Institute and the Chinese Academy of Fisheries Sciences for providing temperature, salinity, nutrient and zooplankton data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songhui Lu.

Additional information

Foundation item: The National Basic Research Program (973 Program) of China under contract No. 2010CB428702; the Science and Technology Planning Project of Guangdong Province of China under contract No. 2016A030303012; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA11020304.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Cen, J., Cui, L. et al. Response of size-fractionated phytoplankton to environmental factors near the Changjiang Estuary. Acta Oceanol. Sin. 38, 151–159 (2019). https://doi.org/10.1007/s13131-018-1259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-018-1259-4

Key words

Navigation