Skip to main content
Log in

Effects of hurricane forward speed and approach angle on storm surges: an idealized numerical experiment

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The effects of hurricane forward speed (V) and approach angle (θ) on storm surge are important and a systematic investigation covering possible and continuous ranges of these parameters has not been done before. Here we present such a study with a numerical experiment using the Finite Volume Community Ocean Model (FVCOM). The hurricane track is simplified as a straight line, such that V and θ fully define the motion of the hurricane. The maximum surge is contributed by both free waves and a forced storm surge wave moving with the hurricane. Among the free waves, Kelvin-type waves can only propagate in the down-coast direction. Simulations show that those waves can only have a significant positive storm surge when the hurricane velocity has a down-coast component. The optimal values of V and θ that maximize the storm surge in an idealized semi-circular ocean basin are functions of the bathymetry. For a constant bathymetry, the maximum surge occurs when the hurricane approaches the coast from the normal direction when the free wave generation is minimal; for a stepped bathymetry, the maximum surge occurs at a certain acute approach angle which maximizes the duration of persistent wind forcing; a step-like bathymetry with a sloped shelf is similar to the stepped bathymetry, with the added possibility of landfall resonance when the free and forced waves are moving at about the same velocity. For other cases, the storm surge is smaller, given other parameters (hurricane size, maximum wind speed, etc.) unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blake E S, Rappaport E N, Jarrell J D. et al. 2007. The deadliest, costliest, and most intense United States tropical cyclones fro. 185. t. 200. (and Other Frequently Requested Hurricane Facts). Miami: National Weather Service, National Hurricane Center

    Google Scholar 

  • Chen Changsheng, Liu H., R.C. Beardsle. 2003. An unstructured grid, finite-volume, three dimensional, primitive equation ocean model: application to coastal ocean and estuaries, J. Atmos. Oceanic Technol., 20. 159–186, doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2

    Article  Google Scholar 

  • Conner W C, Kraft R H, Lee Harris D. 1957. Empirical methods for forecasting the maximum storm tide due to hurricanes and other tropical storms. Monthly Weather Review, 85(4): 113–116, doi: 10.1175/1520-0493(1957)085<0113:EMFFTM>2.0.CO;2

    Article  Google Scholar 

  • Das P K, Sinha M C, Balasubramanyam V. 1974. Storm surges in the Bay of Bengal. Quarterly Journal of the Royal Meteorological Society, 100(425): 437–449, doi: https://doi.org/10.1002/qj.49710042515

    Google Scholar 

  • Ding Yang, Yu Huaming, Bao Xianwen, et al. 2011. Numerical study of the Barotropic responses to a rapidly moving typhoon in the East China Sea. Ocean Dynamics, 61(9): 1237–1259, doi: https://doi.org/10.1007/s10236-011-0436-1

    Article  Google Scholar 

  • Emanuel K A. 1987. The dependence of hurricane intensity on climate. Nature, 326(6112): 483–485, doi: https://doi.org/10.1038/326483a0

    Article  Google Scholar 

  • Fandry C B, Leslie L M, Steedman R K. 1984. Kelvin-type coastal surges generated by tropical cyclones. Journal of Physical Oceanography, 14(3): 582–593, doi: 10.1175/1520-0485(1984)014<0582:KTCSGB>2.0.CO;2

    Article  Google Scholar 

  • Flierl G R, Robinson A R. 1972. Deadly surges in the Bay of Bengal: dynamics and storm-tide tables. Nature, 239(5369): 213–215, doi: 10.1038/239213a0

    Article  Google Scholar 

  • Gill A E. 1982. Atmosphere-Ocean Dynamics. New York: Academic Press

    Google Scholar 

  • Greenspan H P. 1956. The generation of edge waves by moving pressure distributions. Journal of Fluid Mechanics, 1(6): 574–592, doi: https://doi.org/10.1017/S002211205600038X

    Article  Google Scholar 

  • Holland G J. 1980. An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108(8): 1212–1218, doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2

    Article  Google Scholar 

  • Hoover R A. 1957. Empirical relationships of the central pressures in hurricanes to the maximum surge and storm tide. Monthly Weather Review, 85(5): 167–174, doi: 10.1175/1520-0493(1957)085<0167:EROTCP>2.0.CO;2

    Article  Google Scholar 

  • Irish J L, Resio D T, Ratcliff J J. 2008. The influence of storm size on hurricane surge. Journal of Physical Oceanography, 38(9): 2003–2013, doi: https://doi.org/10.1175/2008JPO3727.1

    Article  Google Scholar 

  • Jelesnianski C P. 1966. Numerical computations of storm surges without bottom stress. Monthly Weather Review, 94(6): 379–394, doi: 10.1175/1520-0493(1966)094<0379:NCOSSW>2.3.CO;2

    Article  Google Scholar 

  • Jelesnianski C P. 1967. Numerical computations of storm surges with bottom stress. Monthly Weather Review, 95(11): 740–756, doi: 10.1175/1520-0493(1967)095<0740:NCOSSW>2.3.CO;2

    Article  Google Scholar 

  • Kajiura K. 1962. A note on the generation of boundary waves of kelvin type. Journal of the Oceanographical Society of Japan, 18(2): 49–58, doi: 10.5928/kaiyou1942.18.49

    Article  Google Scholar 

  • Ke Ziming, Yankovsky A E. 2010. The hybrid kelvin-edge wave and its role in tidal dynamics. Journal of Physical Oceanography, 40(12): 2757–2767, doi: https://doi.org/10.1175/2010JPO4430.1

    Article  Google Scholar 

  • Kennedy A B, Gravois U, Zachry B C, et al. 2011. Origin of the hurricane Ike forerunner surge. Geophysical Research Letters, 38(8): L08608, doi: https://doi.org/10.1029/2011GL047090

    Article  Google Scholar 

  • Knutson T R, McBride J L, Chan J, et al. 2010. Tropical cyclones and climate change. Nature Geoscience, 3(3): 157–163, doi: 10.1038/ngeo779

    Article  Google Scholar 

  • Kowalik Z, Murty T S. 1993. Numerical Modeling of Ocean Dynamics. London: World Scientific

    Book  Google Scholar 

  • Large W G, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11(3): 324–336, doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2

    Article  Google Scholar 

  • Li Chunyan. 1996. Tidally induced residual circulation in estuaries with cross channel bathymetry [dissertation]. Storrs: University of Connecticut, 1–242

    Google Scholar 

  • Li Chunyan, Liu Fengshu. 1987. A method for the analysis of three dimensional oceanic long wave motions. Oceanologia et Limnologia Sinica (in Chinese), 18(3): 237–243

    Google Scholar 

  • Mercer D, Sheng Jinyu, Greatbatch R J, et al. 2002. Barotropic waves generated by storms moving rapidly over shallow water. Journal of Geophysical Research: Oceans, 107(C10): 161–167, doi: https://doi.org/10.1029/2001JC001140

    Article  Google Scholar 

  • Morey S L, Baig S, Bourassa M A, et al. 2006. Remote forcing contribution to storm - induced sea level rise during hurricane Dennis. Geophysical Research Letters, 33(19): doi: https://doi.org/10.1029/2006GL027021

    Google Scholar 

  • Murakami H, Levin E, Delworth T L, et al. 2018. Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science, 362(6416): 794–799, doi: https://doi.org/10.1126/science.aat6711

    Article  Google Scholar 

  • Murty T S. 1984. Storm Surges-Meteorological Ocean Tides. Canada: National Research Council of Canada

    Google Scholar 

  • Peng Machuan, Xie Lian, Pietrafesa L J. 2006a. A numerical study on hurricane - induced storm surge and inundation in Charleston Harbor, South Carolina. Journal of Geophysical Research: Oceans, 111(C8): doi: https://doi.org/10.1029/2004JC002755

    Google Scholar 

  • Peng Machuan, Xie Lian, Pietrafesa L J. 2006b. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields. Ocean Modelling, 14(1-2): 81–101, doi: https://doi.org/10.1016/j.ocemod.2006.03.004

    Article  Google Scholar 

  • Proudman J. 1955. The propagation of tide and surge in an estuary. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 231(1184): 8–24, doi: https://doi.org/10.1098/rspa.1955.0153

    Article  Google Scholar 

  • Rego J L, Li Chunyan. 2009. On the importance of the forward speed of hurricanes in storm surge forecasting: a numerical study. Geophysical Research Letters, 36(7): doi: https://doi.org/10.1029/2008GL036953

    Google Scholar 

  • Rego J L, Li Chunyan. 2010a. Nonlinear terms in storm surge predictions: effect of tide and shelf geometry with case study from hurricane Rita. Journal of Geophysical Research: Oceans, 115(C6): doi: https://doi.org/10.1029/2009JC005285

    Google Scholar 

  • Rego J L, Li Chunyan. 2010b. Storm surge propagation in Galveston bay during hurricane Ike. Journal of Marine Systems, 82(4): 265–279, doi: https://doi.org/10.1016/j.jmarsys.2010.06.001

    Article  Google Scholar 

  • Rossiter J R. 1958. Storm surges in the North Sea. 1. t. 3. Decembe. 1954. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 251(991): 139–160, doi: https://doi.org/10.1098/rsta.1958.0012

    Article  Google Scholar 

  • Thiebaut S, Vennell R. 2011. Resonance of long waves generated by storms obliquely crossing shelf topography in a Rotating Ocean. Journal of Fluid Mechanics. 682. 261–288, doi: https://doi.org/10.1017/jfm.2011.221

    Article  Google Scholar 

  • Thomson R E. 1970. On the generation of kelvin-type waves by atmospheric disturbances. Journal of Fluid Mechanics, 42(4): 657–670, doi: https://doi.org/10.1017/S0022112070001532

    Article  Google Scholar 

  • Weenink M P.H. 1956. The “Twin” Storm Surges during 21st-24th December. 1954. A case of resonance. Deutsche Hydrografische Zeitschrift, 9(5): 240–249, doi: https://doi.org/10.1007/BF02020089

    Article  Google Scholar 

  • Weisberg R H, Zheng Lianyuan. 2006. Hurricane storm surge simulations for Tampa Bay. Estuaries and Coasts, 29(6): 899–913, doi: https://doi.org/10.1007/BF02798649

    Article  Google Scholar 

  • Yankovsky A E. 2008. Long-wave response of the West Florida shelf to the landfall of hurricane Wilma, Octobe. 2005. Journal of Coastal Research, 24(4A): 33–39, doi: 10.2112/06-0824.1

    Article  Google Scholar 

  • Yankovsky A E. 2009. Large-scale edge waves generated by hurricane landfall. Journal of Geophysical Research: Oceans, 114(C3): C03014, doi: https://doi.org/10.1029/2008JC005113

    Article  Google Scholar 

Download references

Acknowledgements

We thank Changsheng Chen and his lab personnel at the University of Massachusetts-Dartmouth for numerous help in using FVCOM. We appreciate the support of the Louisiana Optical Network Infrastructure (LONI) Management Council and LONI Network Operation Center staff at LSU for allowing us the access and use of the LONI super computers for the numerical simulation for this and related work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Li.

Additional information

Foundation item: The National Key R & D Project under contract No. 2017YFC1404201.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Li, C. Effects of hurricane forward speed and approach angle on storm surges: an idealized numerical experiment. Acta Oceanol. Sin. 38, 48–56 (2019). https://doi.org/10.1007/s13131-018-1081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-018-1081-z

Key words

Navigation