Skip to main content
Log in

DNA barcode reveals high cryptic diversity in the commercially important Penaeini shrimps (Decapoda, Penaeidae)

  • ORIGINAL ARTICLE
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The inability to precisely identify biological species has direct impacts on conservation efforts, which is especially true among taxa of great commercial interest such as representatives of the Penaeini tribe. Those shrimp supply more than half of the global demand for crustaceans and have important functional roles in ocean ecosystems. Recent systematic studies suggest that the diversity of taxa within Penaeini is underestimated, and there are controversial taxonomic classifications. In this work, we used phylogenetic and phylogeographic approaches to assess the genetic diversity and evolutionary of representatives of the Penaeini tribe, focusing on the mitochondrial cytochrome oxidase subunit I gene. A total of 1680 COI sequences from 24 species were accessed on the Bold Systems platform. We detected several identification errors and synonyms among the 15 taxa of the tribe, principally within the genus Penaeus. Phylogeographic analyses allowed the identification of highly structured populations within several ecoregions of the Atlantic (19), Indian (16), and Pacific (10) oceans. The delimitation methods (GMYC, bPTB, and BINs) suggest are cryptic species such as Fenneropenaeus indicus (2 MOTUs), Litopenaeus vannamei (2 MOTUs), Penaeus monodon (3 MOTUs), and P. semisulcatus (4 MOTUs). The highest cryptic diversity concentration was found in the Indo-West Pacific region, suggesting it as the center of origin for the tribe. Our data provide important information that could subsidize management actions and guarantee the long-term maintenance of those lineages and their stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All sequences obtained from this study were extracted of Bold Systems repository, (https://v4.boldsystems.org/).

References

  • Abdul-Aziz, M. A., Schöfl, G., Mrotzek, G., Haryanti, H., Sugama, K., & Saluz, H. P. (2015). Population structure of the Indonesian giant tiger shrimp Penaeus monodon: A window into evolutionary similarities between paralogous mitochondrial DNA sequences and their genomes. Ecology and Evolution, 5, 3570–3584. https://doi.org/10.1002/ece3.1616

    Article  PubMed  PubMed Central  Google Scholar 

  • Alam, M. M. M., Cross, M. D. S. T., & Pálson, S. (2016). Mitochondrial DNA variation revealsdistinct lineages in Penaeus semisulcatus (Decapoda, Penaeidae) from the Indo-West Pacific Ocean. Marine Ecology, 38, e12406. https://doi.org/10.1111/maec.12406

  • Alam, M. M. M., Westfall, K. M., & Pálsson, S. (2015). Mitochondrial DNA variation reveals cryptic species in Fenneropenaeus indicus. Bulletin of Marine Science, 91, 15–31. https://doi.org/10.5343/bms.2014.1036

    Article  Google Scholar 

  • Alam, M. M. M., Westfall, K. M., & Pálsson, S. (2021). Mitochondrial DNA variation of Metapenaeus monoceros (Decapoda, Penaeidae) reveals high genetic variation within Bangladesh with distinct lineages in the Indian Ocean. Marine Ecology, e12653. https://doi.org/10.1111/maec.12653

  • Ball, A. O., & Chapman, R. W. (2003). Population genetic analysis of white shrimp, Litopenaeus setiferus, using microsatellite genetic markers. Mol. Ecology, 12, 2319–2330. https://doi.org/10.1046/j.1365-294X.2003.01922.x

    Article  CAS  Google Scholar 

  • Barber, P. H., & Bellwood, D. R. (2005). Biodiversity hotspots: Evolutionary origins of biodiversity in wrasses (Halichoeres: Labridae) in the Indo-Pacific and new world tropics. Molecular Phylogenetics and Evolution, 35, 235–253. https://doi.org/10.1016/j.ympev.2004.10.004

    Article  PubMed  Google Scholar 

  • Barbieri, E., Coa, F., & Rezende, K. F. O. (2016). The exotic species Litopenaeus vannamei (Boone, 1931) occurrence in Cananeia, Iguape and Ilha Comprida lagoon estuary complex. Bol do Inst de Pesca, 42, 479–485. https://doi.org/10.20950/1678-2305.2016v42n2p479

  • Barrett, S., & Charlesworth, D. (1991). Effects of a change in the level of inbreeding on the genetic load. Nature, 352, 522–524. https://doi.org/10.1038/352522a0

    Article  CAS  PubMed  Google Scholar 

  • Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429, 827–833. https://doi.org/10.1038/nature02691

    Article  CAS  PubMed  Google Scholar 

  • Benzie, J. A. H., Ballment, E., Forbes, A. T., Demetriades, N. T., Sugama, K., & Haryanti Moria, S. (2002). Mitochondrial DNA variation in Indo-Pacific populations of the giant tiger prawn. Penaeus Monodon. Mol. Eco, 11, 2553–2569. https://doi.org/10.1046/j.1365-294X.2002.01638.x

    Article  CAS  Google Scholar 

  • Birben, U. (2019). The effectiveness of protected areas in biodiversity conservation: The case of Turkey. Cerne, 25, 424–438. https://doi.org/10.1590/01047760201925042644

    Article  Google Scholar 

  • Burkenroad, M. D. (1983). Natural classification of Dendrobranchiata, with a key to recent genera. In: Schram, F.R. (Ed), Crustacean Issues I. Crustacean Phylogeny. A.A. Balkema, Rotterdam 279–290.

  • Briggs, J. C. (1999). Coincident biogeographic patterns: Indo-western Pacific Ocean. Evol, 53, 326–335. https://doi.org/10.1111/j.1558-5646.1999.tb03769.x

    Article  Google Scholar 

  • Briggs, J. C., & Bowen, B. W. (2013). Marine shelf habitat: Biogeography and evolution. Journal of Biogeography, 40, 1023–1035.

    Article  Google Scholar 

  • Brown, S. D. J., Collins, R. A., Boyer, S., Lefort, M.-C., Malumbres-Olarte, J., Vink, C. J., & Cruickshan, R. H. G. (2012). Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources, 12, 562–565. https://doi.org/10.1111/j.1755-0998.2011.03108.x

    Article  PubMed  Google Scholar 

  • Candek, K., & Kuntner, M. (2015). DNA barcoding gap: Reliable species identification over morphological and geographical scales. Molecular Ecology Resources, 15, 268–277. https://doi.org/10.1111/1755-0998.12304

    Article  CAS  PubMed  Google Scholar 

  • Carvalho-Batista, A., Terossi, M., Zara, F. J., Mantelatto, F. L., & Costa, R. C. (2019). A multigene and morphological analysis expands the diversity of the seabod shrimp Xiphopenaeus Smith, 1869 (Decapoda: Penaeidae), with descriptions of two new species. Scientific Reports, 9, 15281. https://doi.org/10.1038/s41598-019-51484-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho-Batista, A., Terossi, M., Zara, F. J., Mantelatto, F. L., & Costa, R. C., (2020). Validation of Xiphopenaeus dincao Carvalho-Batista, Terossi, Zara, Mantelatto & Costa and Xiphopenaeus baueri Carvalho-Batista, Terossi, Zara, Mantelatto & Costa (Decapoda: Penaeidae) from western Atlantic. Zootaxa4772, 597–599. https://doi.org/10.11646/zootaxa.4772.3.10

  • Chame, M. (2009). Espécies Exóticas Invasoras que Afetam a Saúde Humana. Ciência e Cultura61, 1234.

  • Chan, T. Y., Tong, J., Tam, H. K., & Chu, K. H. (2008). Phylogenetic relationships among the genera of the Penaeidae (Crustacea:Decapoda) revealed by mitochondrial 16S rRNA gene sequences. Zootaxa1694, 50. https://doi.org/10.11646/zootaxa.1694.1.2

  • Cheng, J., Sha, Z., & Liu, R. (2015). DNA barcoding of genus Metapenaeopsis (Decapoda: Penaeidae) and molecular phylogeny inferred from mitochondrial and nuclear DNA sequences. Biochemical Systematics and Ecology, 61, 376–384. https://doi.org/10.1016/j.bse.2015.07.005

    Article  CAS  Google Scholar 

  • Cheng, J., Chan, T. Y., Zhang, N., Sun, S., & Sha, Z.-l. (2018). Mitochondrial phylogenomics reveals insights into taxonomy and evolution of Penaeoidea (Crustacea: Decapoda). Zool. Scripta, 47, 582–594. https://doi.org/10.1111/zsc.12298

    Article  Google Scholar 

  • Costa, R. C., Fransozo, A., Freire, F. A., & Castilho, A. L. (2007). Abundance and ecological distribution of the shrimp Xiphopenaeus kroyeri (Heller, 1862) (Decapoda: Penaeidae) in the northern Coast of São Paulo State, Brazil. Gulf and Caribbean Research, 19, 33- 41. https://doi.org/10.18785/gcr.1901.04

  • Dall, W., Hill, B. J., Rothlisberg, P. C., & Sharples, D. J. (1990). The biology of the Penaeidae. San Diego: Academic Press Advanced Marine Biology27, 504.

  • Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. https://doi.org/10.1186/1471-2148-7-214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 22, 1185–1192.

    Article  Google Scholar 

  • Folmer, O., Black, M. B., & Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

    CAS  PubMed  Google Scholar 

  • Frankham, R., Ballou, J. D., & Briscoe, D. A. (2002). Introduction to conservation genetics. Cambridge University Press.

    Book  Google Scholar 

  • França, N. F. C., de Moraes, A. B., Carvalho-Batista, A., de Melo, M. C. R. B., López-Greco, L., Mantelatto, F. L., & Freire, F. A. M. (2019). Farfantepenaeus subtilis (Pérez-Farfante, 1967) and F. brasiliensis (Latreille, 1817) (Decapoda, Penaeidae): Ontogenetic comparison using the combined analysis of secondary sexual characters and molecular markers. Fisheries Research, 216, 89–95. https://doi.org/10.1016/j.fishres.2019.03.024

    Article  Google Scholar 

  • França, N. F. C., Alencar, C. E. R. D., Mantelatto, F. L., Freire, F. A. M. (2020). Filling biogeographic gaps about the shrimp Farfantepenaeus isabelae Tavares & Gusmão, 2016 (Decapoda: Penaeidae) in South America. Zootaxa, 4718, 497–508. https://doi.org/10.11646/zootaxa.4718.4.4

  • Fujisawa, T., & Barraclough, T. G. (2013). Delimiting Species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Systematic Biology, 62, 707–724. https://doi.org/10.1093/sysbio/syt033

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghatak, S., Lallawmzuali, D., Lalmawia, S. R., Zothanpuia, P. J. L., Muthukumaran, R. B., Kumar, N. S. (2014). Mitochondrial D-loop and cytochrome oxidase C subunit I polymorphisms among the breast cancer patients of Mizoram, Northeast India. Current Genetics, 60, 201–12. https://doi.org/10.1007/s00294-014-0425-2

  • Gopurenko, D., Hughes, J. M., & Keenan, C. P. (1999). Mitochondrial DNA evidence for rapid colonisation of the Indo-West Pacific by the mudcrab Scylla serrata. Marine Biology, 134, 227–233. https://doi.org/10.1007/s002270050541

    Article  Google Scholar 

  • Gusmão, J., Lazoski, C., Monteiro, F. A., & Solé-Cava, A. M. (2005). Cryptic species and population structuring of the Atlantic and Pacific seabob shrimp species, Xiphopenaeus kroyeri and Xiphopenaeus rivetii. Marine Biology, 149, 491–502. https://doi.org/10.1007/s00227-005-0232-x

    Article  Google Scholar 

  • Hall, T. A. (1998). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29

  • Halim, S. A. A., Othman, A. S., Akib, N. A. M., Jamaludin, N.-A., Esa, Y., & Nor, S. A. M. (2021). Mitochondrial markers identify a genetic boundary of the green tiger prawn (Penaeus semisulcatus) in the Indo-Pacific Ocean. Mol. Eco., 11, 2553–2569. https://doi.org/10.1046/j.1365-294X.2002.01638.x

    Article  Google Scholar 

  • Hebert, P. D. N., Cywinska, A., Ball, S. L., de Waard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B Biological Science, 270, 313–321. https://doi.org/10.1098/rspb.2002.2218

  • Hurzaid, A., Chan, T.-Y., Nor, S. A. M., Muchlisin, Z. A., & Chen, W.-J. (2020). Molecular phylogeny and diversity of penaeid shrimps (Crustacea: Decapoda) from South-East Asian Waters. Zool Scr, 20, 1–18. https://doi.org/10.1111/zsc.12428

    Article  Google Scholar 

  • Hurwood, D. A., Dammannagoda, S., Krosch, M. N., Jung, H., Salin, K. R., Youssef, M.A.-B.H., de Bruyn, M., & Mather, P. B. (2014). Impacts of climatic factors on evolution of molecular diversity and the natural distribution of wild stocks of the giant freshwater prawn (Macrobrachium rosenbergii). Freshwater Sci, 33, 217–231. https://doi.org/10.1086/675243

    Article  Google Scholar 

  • Jacobina, U. P., Torres, R. A., de Mello Affonso, P. R. A., dos Santos, E. V., Calado, L. L., & de Araújo Bitencourt, J. (2020). DNA barcoding reveals cryptic diversity and peculiar phylogeographic patterns in mojarras (Perciformes: Gerreidae) from the Caribbean and South-western Atlantic. Journal Marine Biology Association U.K., 1–7. https://doi.org/10.1017/S0025315419001206

  • Krishnamurthy, P. K., & Franc, R. A. (2012). A critical review on the utility of DNA barcoding in biodiversity conservation. Biodiversity and Conservation, 21, 1901–1919. https://doi.org/10.1007/s10531-012-0306-2

    Article  Google Scholar 

  • Kumar, A., Lata, C., Kumar, S., Mangalassery, S., Singh, J. P., Mishra, A. K., & Dayal, D. (2018). Effect of salinity and alkalinity on responses of halophytic grasses Sporobolus marginatus and Urochondra setulose. Indian J Agric Res, 88, 149–157.

    Google Scholar 

  • Lavery, S., Chan, T. Y., Tam, Y. K., & Chu, K. H. (2004). Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s.l. derived from mitochondrial DNA. Molecular Phylogenetics and Evolution, 31, 39–49. https://doi.org/10.1016/j.ympev.2003.07.015

    Article  CAS  PubMed  Google Scholar 

  • Lefébure, T., Gou, M., Trontelj, P., Briolay, J., & Gibert, J. (2006). Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology, 15, 1797–1806. https://doi.org/10.1111/j.1365-294X.2006.02888.x

    Article  CAS  PubMed  Google Scholar 

  • Ma, K. Y., Chan, T. Y., & Chu, K. H. (2009). Phylogeny of penaeoid shrimps (Decapoda: Penaeoidea) inferred from nuclear protein-coding genes. Molecular Phylogenetics and Evolution, 53, 45–55. https://doi.org/10.1016/j.ympev.2009.05.019

    Article  CAS  PubMed  Google Scholar 

  • Ma, K. Y., Chan, T. Y., & Chu, K. H. (2011). Refuting the six-genus classification of Penaeus s.l. (Dendrobranchiata, Penaeidae): A combined analysis of mitochondrial and nuclear genes. Zool. Scr., 40, 498–508. https://doi.org/10.1111/j.1463-6409.2011.00483.x

    Article  Google Scholar 

  • Maggioni, R., Rogers, A. R., Maclean, N., & D’Incao, F. (2001). Molecular phylogeny of western Atlantic Farfantepenaeus and Litopenaeus shrimp based on mitochondrial 16 rRNA partial sequences. Molecular Phylogenetics and Evolution, 18, 66–73. https://doi.org/10.1006/mpev.2000.0866

    Article  CAS  PubMed  Google Scholar 

  • Maggioni, A. P. (2013). Are hospitalized or ambulatory patients with heart failure treated in accordance with European Society of Cardiology guidelines? Evidence from 12,440 patients of the ESC Heart Failure Long-Term Registry. European Journal of Heart Failure, 15, 1173–1184. https://doi.org/10.1093/eurjhf/hft134

    Article  CAS  PubMed  Google Scholar 

  • Manolopoulou, I., Legarreta, L., Emerson, B. C., Brooks, S., & Tavaré, S. (2011). A Bayesian approach to phylogeograpgic clustering. Interface Focus, 1, 909–921. https://doi.org/10.1098/rsfs.2011.0054

    Article  PubMed  PubMed Central  Google Scholar 

  • McCartney, M. A., Keller, G., & Lessios, H. A. (2000). Dispersal barriers in tropical oceans and speciation of Atlantic and eastern Pacific Echinometra sea urchins. Molecular Ecology, 9, 1391–1400. https://doi.org/10.1046/j.1365-294x.2000.01022.x

    Article  CAS  PubMed  Google Scholar 

  • Mora, C., & Zapata, F. A. (2013). The balance of nature and human impact (ed. K. Rohde) 239–257.

  • Muller-Karger, F. E., McClain, C. R., & Richardson, P. L. (1988). The dispersal of the Amazon’s water. Nature, 333, 56–59. https://doi.org/10.1038/333056a0

    Article  Google Scholar 

  • Palumbi, S., & Benzie, J. (1991). Large mitochondrial DNA differences between morphologically similar penaeid shrimp. Mol. Marine Biol. Biotechnol, 1, 27–34.

    CAS  Google Scholar 

  • Palumbi, S. R. (1994). Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology. Evolving Systems, 25, 547–572. https://doi.org/10.1146/annurev.es.25.110194.002555

    Article  Google Scholar 

  • Pavan-Kumar, A. P., Gireesh-Babu, A. K., Jaiswar, A. G., Gopal, K., & Lakra, W. S. (2016). DNA Barcoding of marine fishes: Prospects and challenges. DNA Barcoding in Marine Perspectives, 285–299. https://doi.org/10.1007/978-3-319-41840-7_17

  • Pérez-Farfante, I. (1969). Western Atlantic shrimps of the genus Penaeus. Fishery Bulletin, 67, 461–591.

    Google Scholar 

  • Pérez-Farfante, I., & Kensley, B. (1997). Penaeoid and sergestoid shrimps and prawns of the world. Keys and diagnoses for the families and genera. Memories of the Muséum Nationale d'Histoire Naturelle, Paris, 175.

  • Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., & Vogler, A. P. (2006). Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects. Systematic Biology, 55(4), 595–609. https://doi.org/10.1080/10635150600852011

    Article  PubMed  Google Scholar 

  • Puckridge, M., Andreakis, N., Appleyard, S. A., & Ward, R. D. (2013). Cryptic diversity in flathead fishes (Scorpaeniformes: Platycephalidae) across the Indo-West Pacific uncovered by DNA barcoding. Molecular Ecology Resources, 13, 32–42. https://doi.org/10.1111/1755-0998.12022

    Article  CAS  PubMed  Google Scholar 

  • Puillandre, N., Lambert, A., Bouillet, S., & Achaz, G. (2012). ABGD Automatic Barcode Gap Discovery for primary species delimitation Molecular Ecology, 21(8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

    Article  CAS  PubMed  Google Scholar 

  • Rambaut, A. (2009). FigTree versão 1.3.1. Disponível em: https://tree.bio.ed.ac.uk/

  • Ramirez, J. L., Simbine, L., Marques, C. G., Zelada-Mázmela, E., Reyes-Flores, L. E., López, A. S., Gusmão, J., Tavares, C., Galetti, P. M., Jr., & Freitas, D. P. (2021). DNA barcoding of Penaeidae (Decapoda; Crustacea): Non-distance-based species delimitation of the most economically important shrimp family. Diversity, 13, 460. https://doi.org/10.3390/d131004

    Article  CAS  Google Scholar 

  • Ratnasingham, S., & Hebert, P. D. N. (2013). A DNA-based registry for all animal species: The barcode index number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213

  • Rocha, L. A., Bass, A. L., Robertson, D. R., & Bowen, B. W. (2002). Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Molecular Ecology, 11, 243–252. https://doi.org/10.1046/j.0962-1083.2001.01431.x

    Article  CAS  PubMed  Google Scholar 

  • Simbine, L., Marques, C. G., Freitas, P. D., Samucidine, K. E., Gusmão, J., Tavares, C., & Junior, P. G. (2018). Metapenaeus dobsoni (Miers, 1878), an alien Penaeidae in Mozambican coastal waters: Confirmation by mtDNA and morphology analyses. WIO. Journal Marine Science, 17, 1–12.

    Google Scholar 

  • Souza, R. N. (2018). Densidade de Estocagem do Camarão Marinho (Litopenaeus vannamei) em Viveiros Escavados em Águas Oligohalinas. Monografia apresentada ao Curso de Zootecnia no Centro de Ciências Agrárias da Universidade Federal da Paraíba.

  • Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanhope, M. J., Connelly, M. M., & Hartwick, B. (1992). Evolution of a crustacean chemical communication channel: Behavioral and ecological genetic evidence for a habitat-modified, race-specific pheromone. Journal Chemistry Ecology, 18, 1871–1887. https://doi.org/10.1007/BF02751110

  • Tahim, E. F., Damaceno, M. N., & Araújo, I. F. (2019). Trajetória Tecnológica e Sustentabilidade Ambiental na Cadeia de Produção da Carcinicultura no Brasil. Rev. De Econ. e Sociol. Rural, 57, 93–108. https://doi.org/10.1590/1234-56781806-94790570106

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavares, C., & Gusmão, J. (2016). Description of a new Penaeidae (Decapoda: Dendrobranchiata) species, Farfantepenaeus isabelae sp. Nov. Zootaxa, 4171, 505–516. https://doi.org/10.11646/zootaxa.4171.3.6

  • Team, R. C. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project.org/

  • Teodoro, S. S. A., Terossi, M., Mantelatto, F. L., & Costa, R. C. (2016). Discordance in the identification of juvenile pink shrimp (Farfantepenaeus brasiliensis and F. paulensis: Family Penaeidae): An integrative approach using morphology, morphometry and barcoding. Fisheries Research, 183, 244–253. https://doi.org/10.1016/j.fishres.2016.06.009

    Article  Google Scholar 

  • Timm, L., Browder, J. A., Simon, S., Jackson, S. T., Zink, I. C., & Bracken-Grissom, H. D. (2019). A tree money grows on: The first inclusive molecular phylogeny of the economically important pink shrimp (Decapoda: Farfantepenaeus) reveals cryptic diversity. Invertebrate Systematics, 33, 488–500. https://doi.org/10.1071/IS18044

    Article  Google Scholar 

  • Tiwari, S. (2015). Introduction of exotic species of shrimp in shrimp culture potential of India. Marine Science, 14.

  • Toonen, R. J., Bowen, B. W., Iacchei, M., & Briggs, J. C. (2016). Biogeography, Marine. In: Kliman, R.M. (ed.), Encyclopedia Evolution Biology, 1, 166–178. https://doi.org/10.1016/B978-0-12-800049-6.00120-7

  • Tsoi, K. H., Wang, Z. Y., & Chu, K. H. (2005). Genetic divergence between two morphologically similar varieties of the kuruma shrimp Penaeus japonicus. Marine Biology, 147, 367–379. https://doi.org/10.1007/s00227-005-1585-x

    Article  CAS  Google Scholar 

  • Tsoi, K. H., Chan, T. Y., & Chu, K. H. (2007). Molecular population structure of the kuruma shrimp Penaeus japonicus species complex in western Pacic. Marine Biology, 150, 1345–1364. https://doi.org/10.1007/s00227-006-0426-x

    Article  CAS  Google Scholar 

  • Tsoi, K., Ma, K. Y., Wu, T. H., Fennessy, S. T., Chu, K. H., & Chan, T. Y. (2014). Verification of the cryptic species Penaeus pulchricaudatus in the commercially important kuruma shrimp P. japonicus (Decapoda: Penaeidae) using molecular taxonomy. Invertebrate Systematics, 28, 476–490. https://doi.org/10.1071/IS14001

    Article  Google Scholar 

  • Voloch, C. M., Freire, P. R., & Russo, C. A. M. (2009). Molecular phylogeny and divergence time estimates of Penaeid shrimp lineages (Decapoda: Penaeidae). Zootaxa, 2107, 41–52. https://doi.org/10.11646/zootaxa.2107.1.2

  • Wang, D., Yang, X., Cai, D., Li, P., Zhang, Z., Lin, Z., & Zhang, Y. (2021). Genomic analysis of mutations in platelet mitochondria in a case of benzene-induced leukaemia. Medicine, 100, e24014. https://doi.org/10.1097/MD.0000000000024014

  • Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B: Biol. Sci, 360, 1847–1857. https://doi.org/10.1098/rstb.2005.1716

    Article  CAS  Google Scholar 

  • Waqairatu, S. S., Dierens, L., Cowley, J. A., Dixon, T. J., Johnson, K. J., Barnes, A. C., & Li, Y. (2012). Genetic analysis of Black Tiger shrimp (Penaeus monodon) across its natural distribution range reveals more recente colonization of Fiji and other South Pacific islands. Ecology and Evolution, 2, 2057–2071. https://doi.org/10.1002/ece3.316

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, C.-H. (2014). Molecular phylogeny of the deep-sea penaeid shrimp genus Parapenaeus (Crustacea: Decapoda: Dendrobranchiata). Zoologica Scripta, 44, 312–323. https://doi.org/10.1111/zsc.12097

    Article  Google Scholar 

  • You, E.M., Chiu, T.S., Liu, K.F., Tassanakajon, A., Klinbunga, S., Triwitayakorn, K., de la Peña, L.D., Li, Y., & Yu, H.T. (2008). Microsatellite and mitochondrial haplotype diversity reveals population differentiation in the tiger shrimp (Penaeus monodon) in the Indo-Pacific region. Animal Genetics, 39, 267–277. https://doi.org/10.1111/j.1365-2052.2008.01724.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements Abstract. Bioinformatics, 29(22), 2869–2876. https://doi.org/10.1093/bioinformatics/btt499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kim Ribeiro Barão, Dr. Alexandre Oliveira, Dr. Henrique Batalha, and Dra. Silvia Britto for their critical review of the original manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the production of this article: MCLF: conceptualization, methodology, software, formal analysis, investigation, writing—original draft, writing—review and editing, visualization. PCF: conceptualization, investigation, writing—original draft. AIP: writing—review and editing, visualization. UPJ: conceptualization, methodology, software, formal analysis, investigation, writing—original draft, writing—review and editing, visualization, supervision, project administration.

Corresponding author

Correspondence to Uedson Pereira Jacobina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farias, M.C.L., Filho, P.C., Pontes, A.I. et al. DNA barcode reveals high cryptic diversity in the commercially important Penaeini shrimps (Decapoda, Penaeidae). Org Divers Evol 23, 857–869 (2023). https://doi.org/10.1007/s13127-023-00616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-023-00616-9

Keywords

Navigation