Skip to main content
Log in

Direct development in African squeaker frogs (Anura: Arthroleptidae: Arthroleptis) reveals a mosaic of derived and plesiomorphic characters

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Direct development has evolved independently several times in anurans and direct-developing species are characterized by large-scale developmental repatterning and a complete, or near complete, absence of most tadpole-specific structures. Earlier studies stressed the similarities among different direct-developing species, but more recent studies have indicated differences in the reduction of tadpole-specific structures among different taxa. Here, we describe egg deposition, clutch characteristics and embryonic development of the direct-developing squeaker frogs of the genus Arthroleptis, providing the first detailed description of direct development in Arthroleptidae. Embryonic development in Arthroleptis is characterized by the presence of an opercular fold that still encloses the developing forelimbs, the absence of external gills and an only moderately extended tail. A comparison with published information on other direct-developing anurans reveals broad dissimilarities in the formation of an opercular fold and very different tail morphology among different taxa. An egg tooth, often considered characteristic of direct-developing anurans, seems to be restricted to New World Terrarana. The embryonic diversity seen in direct-developing anuran taxa argues against simplistic assumptions about the evolution of direct development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcala, A. C. (1962). Breeding behaviour and early development of frogs of Negros, Philippine Islands. Copeia, 1962, 679–726.

    Article  Google Scholar 

  • Alcala, A. C., & Brown, W. C. (1982). Reproductive biology of some species of Philautus (Rhacophoridae) and other Philippine anurans. Philippine Journal of Biology, 11, 203–226.

    Google Scholar 

  • Altig, R., & McDiarmid, R. W. (1999). Body plan, development and morphology. In R. W. McDiarmid & R. Altig (Eds.), Tadpoles. The biology of anuran larvae (pp. 24–51). Chicago: University of Chicago Press.

    Google Scholar 

  • Altig, R., & McDiarmid, R. W. (2007). Morphological diversity and evolution of eggs and clutch structure in amphibians. Herpetological Monographs, 21, 1–32.

    Article  Google Scholar 

  • Anstis, M. (2008). Direct development in the Australian myobatrachid frog Metacrinia nichollsi from Western Australia. Records of the Western Australian Museum, 24, 133–150.

    Article  Google Scholar 

  • Anstis, M., Roberts, J. D., & Altig, R. (2007). Direct development in two myobatrachid frogs, Arenophryne rotunda Tyler and Myobatrachus gouldii Gray, from Western Australia. Records of the Western Australian Museum, 23, 259–271.

    Article  Google Scholar 

  • Bahir, M. M., Meegaskumbura, M., Manamendra-Arachchi, K., Schneider, C. J., & Pethiyagoda, R. (2005). Reproduction and terrestrial direct development in Sri Lankan shrub frogs (Ranidae: Rhacophorinae: Philautus). The Raffles Bulletin of Zoology, Supplement, 12, 339–350.

    Google Scholar 

  • Barbour, T., & Loveridge, A. (1928). A comparative study of the herpetological faunae of the Uluguru and Usambara Mountains, Tanganyika Territory with description of new species. Memoirs of the Museum of Comparative Zoology, 50, 87–265.

    Google Scholar 

  • Bavay, M. (1873). On Hylodes martinicensis and its metamorphoses. Annals and Magazine of Natural History, 12, 79–80.

    Article  Google Scholar 

  • Blackburn, D. C. (2008). Biogeography and evolution of body size and life history of African frogs: phylogeny of squeakers (Arthroleptis) and long-fingered frogs (Cardioglossa) estimated from mitochondrial data. Molecular Phylogenetics and Evolution, 49, 806–826.

    Article  CAS  PubMed  Google Scholar 

  • Blackburn, D. C. (2009). Diversity and evolution of male secondary sexual characters in African squeakers and long-fingered frogs. Biological Journal of the Linnean Society, 96, 553–573.

    Article  Google Scholar 

  • Bourne, G. R. (1997). Reproductive behavior of terrestrial breeding frogs Eleutherodactylus johnstonei in Guyana. Journal of Herpetology, 31, 221–229.

    Article  Google Scholar 

  • Callery, E. M., & Elinson, R. P. (2000a). Thyroid hormone-dependent metamorphosis in a direct developing frog. Proceedings of the National Academy of Sciences of the United States of America, 97, 2615–2620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callery, E. M., & Elinson, R. P. (2000b). Opercular development and ontogenetic re-organization in a direct-developing frog. Development, Genes and Evolution, 210, 377–381.

    Article  CAS  Google Scholar 

  • Callery, E. M., Fang, H., & Elinson, R. P. (2001). Frogs without polliwogs: evolution of anuran direct development. BioEssays, 23, 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Channing, A. (2001). Amphibians of Central and Southern Africa. Ithaca: Cornell University Press.

    Google Scholar 

  • Channing, A., & Howell, K. M. (2006). Amphibians of East Africa. Ithaca: Cornell University Press.

    Google Scholar 

  • Collin, R. (2004). Phylogenetic effects, the loss of complex characters, and the evolution of development in calyptraeid gastropods. Evolution, 58, 1488–1502.

    Article  PubMed  Google Scholar 

  • Duellman, W. E., & Trueb, L. (1986). Biology of amphibians. London: Johns Hopkins University Press.

    Google Scholar 

  • Elinson, R. P. (1990). Direct development in frogs: wiping the recapitulationist state clean. Seminars in Developmental Biology, 1, 263–177.

    Google Scholar 

  • Elinson, R. P. (1994). Leg development in a frog without a tadpole (Eleutherodactylus coqui). Journal of Experimental Zoology, 270, 202–210.

    Article  CAS  PubMed  Google Scholar 

  • Elinson, R. P. (2001). Direct development: an alternative way to make a frog. Genesis, 29, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Frost, D. R. (2016). Amphibian species of the World: an online reference, Version 6.0. New York: American Museum of Natural History http://research.amnh.org/herpetology/amphibia/index.html. Accessed 20 February 2017.

    Google Scholar 

  • Gitlin, D. (1944). The development of Eleutherodactylus portoricensis. Copeia, 1944, 91–98.

    Article  Google Scholar 

  • Goin, O. B., & Goin, C. J. (1962). Amphibian eggs and montane environment. Evolution, 16, 364–371.

    Article  Google Scholar 

  • Goldberg, J., & Candioti, F. V. (2015). A tale of a tail: variation during the early ontogeny of Haddadus binotatus (Brachycephaloidea: Craugastoridae) as compared with other direct developers. Journal of Herpetology, 49, 479–484.

    Article  Google Scholar 

  • Goldberg, J., Candioti, F. V., & Akmentins, M. S. (2012). Direct-developing frogs: ontogeny of Oreobates barituensis (Anura: Terrarana) and the development of a novel trait. Amphibia-Reptilia, 33, 239–250.

    Article  Google Scholar 

  • Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183–190.

  • Guibé, J., & Lamotte, M. (1958). Morphologie et reproduction par développement direct d’un anoure du Mont Nimba, Arthroleptis crusculum Angel. Bulletin du Musée National d’Histoire Naturelle, 2, 125–133.

    Google Scholar 

  • Hanken, J. (1989). Development and evolution in amphibians. American Scientist, 77, 337–343.

    Google Scholar 

  • Hanken, J., Klymkowsky, M. W., Summers, C. H., Seufert, D. W., & Ingebrigsten, N. (1992). Cranial ontogeny in the direct-developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), analyzed using whole-mount immunohistochemistry. Journal of Morphology, 211, 95–118.

    Article  CAS  PubMed  Google Scholar 

  • Hanken, J., Jennings, D. H., & Olsson, L. (1997a). Mechanistic basis of life-history evolution in anuran amphibians: direct development. American Zoologist, 37, 160–171.

    Article  Google Scholar 

  • Hanken, J., Klymkowsky, M. W., Alley, K. E., & Jennings, D. H. (1997b). Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs. Proceedings of the Royal Society, Series B, 264, 1349–1354.

    Article  CAS  Google Scholar 

  • Hedges, S. B., Duellman, W. E., & Heinicke, M. P. (2008). New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa, 1737, 1–182.

    Google Scholar 

  • Heinicke, M. P., Duellman, W. E., Trueb, L., Means, D. B., MacCulloch, R. D., & Hedges, S. B. (2009). A new frog family (Anura: Terrarana) from South America and an expanded direct-developing clade revealed by molecular phylogeny. Zootaxa, 2211, 1–35.

    Google Scholar 

  • Hewitt, J. (1933). Descriptions of some new reptiles and a frog from Rhodesia. Occasional Papers of the National Museum of Southern Rhodesia, 2, 45–50.

    Google Scholar 

  • Jameson, D. L. (1950). The development of Eleutherodactylus latrans. Copeia, 1950, 44–46.

    Article  Google Scholar 

  • Kerney, R., Meegaskumbura, M., Manamendra-Arachchi, K., & Hanken, J. (2007). Cranial ontogeny in Philautus silus (Anura: Ranidae: Rhacophorinae) reveals few similarities with other direct-developing anurans. Journal of Morphology, 268, 715–725.

    Article  PubMed  Google Scholar 

  • Krishnamurthy, S. V., Gururaja, K. V., & Reddy, A. H. M. (2002). Direct development in Philautus glandulosus (Anura: Rhacophoridae). Herpetological Natural History, 9, 97–102.

    Google Scholar 

  • Lamotte, M., & Perret, J. L. (1963). Contribution à l‘étude des batraciens de l’Ouest Africain XV. Le développement direct de l’espèce Arthroleptis poecilonotus Peters. Bulletin de l’Institut fondamental d’Afrique noire A, 25, 277–284.

    Google Scholar 

  • Liedtke, H. C., Müller, H., Hafner, J., Penner, J., Gower, D. J., Mazuch, T., Rödel, M.-O., & Loader, S. P. (2017). Terrestrial reproduction as an adaptation to steep terrain in African toads. Proceedings of the Royal Society, Series B, 284, 20162598.

    Article  Google Scholar 

  • Loveridge, A. (1953). Zoological results of a fifth expedition to East Africa. IV. Amphibians from Nyassaland and Tete. Bulletin of the Museum of Comparative Zoology, 110, 323–406.

    Google Scholar 

  • Lutz, B. (1948). Ontogenetic evolution in frogs. Evolution, 2, 29–39.

    Article  CAS  PubMed  Google Scholar 

  • Lynn, W. G. (1942). The embryology of Eleutherodactylus nubicola, an anuran which has no tadpole stage. Contributions to Embryology, 541, 27–62.

    Google Scholar 

  • Lynn, W. G., & Lutz, B. (1946). The development of Eleutherodactylus guentheri Stdnr. 1864. Boletim do Museu Nacional Zoologia, 71, 1–46.

    Google Scholar 

  • Lynn, W. G., & Lutz, B. (1947). The development of Eleutherodactylus nasutus Lutz. Boletim do Museu Nacional Zoologia, 79, 1–30.

    Google Scholar 

  • Moury, J. D., & Hanken, J. (1995). Early cranial neural crest migration in the direct-developing frog, Eleutherodactylus coqui. Acta Anatomica, 153, 243–253.

    Article  CAS  PubMed  Google Scholar 

  • Müller, H., Loader, S. P., Ngalason, W., Howell, K. M., & Gower, D. J. (2007). Reproduction in brevicipitid frogs (Amphibia: Anura: Brevicipitidae)—evidence from Probreviceps m. macrodactylus. Copeia, 2007, 72–733.

    Article  Google Scholar 

  • Müller, H., Liedtke, H. C., Menegon, M., Beck, J., Balesteros, L., Nagel, P., & Loader, S. P. (2013). Forests as promoters of terrestrial life-history strategies in East African amphibians. Biology Letters, 9, 20121146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayan, E. J., Hero, M. J., Christi, K. S., & Morley, C. G. (2011). Early developmental biology of Platymantis vitiana including supportive evidence of structural specialization unique to the Ceratobatrachidae. Journal of Zoology, 284, 68–75.

    Article  Google Scholar 

  • Nieuwkoop, P. D., & Faber, J. (1967). Normal table of Xenopus laevis (Daudin). Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Noble, G. K. (1931). The biology of the Amphibia. New York: McGraw-Hill.

    Book  Google Scholar 

  • Nokhbatolfoghahai, M., Mitchell, N. J., & Downie, J. R. (2010). Surface ciliation and tail structure in direct-developing frog embryos: a comparison between Myobatrachus gouldii and Pristimantis (= Eleutherodactylus) urichi. The Herpetological Journal, 20, 59–68.

    Google Scholar 

  • Patil, N. S., & Kanamadi, R. D. (1997). Direct development in the rhacophorid frog, Philautus variabilis (Gunther). Current Science, 73, 697–701.

    Google Scholar 

  • Raff, R. A. (1987). Constraint, flexibility, and phylogenetic history in the evolution of direct development in sea urchins. Developmental Biology, 119, 6–19.

    Article  CAS  PubMed  Google Scholar 

  • Raff, R. A. (1992). Direct-developing sea urchins and the evolutionary reorganization of early development. BioEssays, 14, 211–218.

    Article  CAS  PubMed  Google Scholar 

  • San Mauro, D., Gower, D. J., Müller, H., Loader, S. P., Zardoya, R., Nussbaum, R. A., & Wilkinson, M. (2014). Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Molecular Phylogenetics and Evolution, 73, 177–189.

    Article  PubMed  Google Scholar 

  • Sandberger-Loua, L., Müller, H., & Rödel, M.-O. (2017). A review of the reproductive biology of the only known matrotrophic viviparous anuran, the West African Nimba toad, Nimbaphrynoides occidentalis. Zoosystematics and Evolution, 93, 105–133.

    Article  Google Scholar 

  • Scholtz, G. (2000). Evolution of the nauplius stage in malacostracan crustaceans. Journal of Zoological Systematics and Evolutionary Research, 38, 175–187.

    Article  Google Scholar 

  • Smith, A. (1849). Illustrations of the zoology of South Africa; consisting chiefly of figures and descriptions of the objects of natural history collected during an expedition into the interior of South Africa, in the years 1834, 1835, and 1836; fitted out by “The Cape Of Good Hope association for exploring Central Africa”: together with a summary of African zoology, and an inquiry into the geographical ranges of species in that quarter of the globe. Vol. III. Reptilia. Appendix. London: Smith, Elder, & Co..

  • Tapley, B. (2009). Notes on the captive husbandry and breeding of the shovel-footed squeaker, Arthroleptis stenodactylus (Pfeffer 1893). Herpetological Bulletin, 110, 38–41.

    Google Scholar 

  • Thibaudeau, G., & Altig, R. (1999). Endotrophic anurans, development and evolution. In R. W. McDiarmid & R. Altig (Eds.), Tadpoles. The biology of anuran larvae (pp. 170–188). Chicago: University of Chicago Press.

    Google Scholar 

  • Townsend, D. S., & Stewart, M. M. (1985). Direct development in Eleutherodactylus coqui (Anura: Leptodactylidae): a staging table. Copeia, 1985, 423–436.

    Article  Google Scholar 

  • Trudeau, V. L., Somoza, G. M., Natale, G. S., Pauli, B., Wignall, J., Jackman, P., Doe, K., & Schueler, F. W. (2010). Hormonal induction of spawning in 4 species of frogs by coinjection with a gonadotropin-releasing hormone agonist and a dopamine antagonist. Reproductive Biology and Endocrinology, 8, 1–36.

    Article  Google Scholar 

  • Wager, V. A. (1965). The frogs of South Africa. Cape Town: Purnell and Sons.

    Google Scholar 

  • Wake, M. H. (1978). The reproductive biology of Eleutherodacytlus jasperi (Amphibia, Anura; Leptodactylidae), with comments on the evolution of live-bearing systems. Journal of Herpetology, 12, 121–133.

    Article  Google Scholar 

  • Wake, M. H. (1980). The reproductive biology of Nectophrynoides malcolmi (Amphibia: Bufonidae), with comments on the evolution of reproductive modes in the genus Nectophrynoides. Copeia, 1980, 193–209.

    Article  Google Scholar 

  • Wake, M. H. (1989). Phylogenesis of direct development and viviparity. In D. B. Wake & G. Roth (Eds.), Complex organismal functions: integration and evolution in vertebrates (pp. 235–250). Chichester: Wiley.

    Google Scholar 

  • Wake, M. H. (2003). Reproductive modes, ontogenies and the evolution of body form. Animal Biology, 53, 209–223.

    Article  Google Scholar 

  • Wake, D. B., & Hanken, J. (1996). Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis? International Journal of Developmental Biology, 40, 859–869.

    CAS  PubMed  Google Scholar 

  • Warren, E. (1922). Observations on the development of the non-aquatic tadpole of Anhydrophryne rattrayi Hewitt. South African Journal of Science, 19, 254–262.

    Google Scholar 

  • Wells, K. D. (2007). The ecology and behavior of amphibians. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Ziermann, J. M., & Diogo, R. (2014). Development of fore- and hindlimb muscles in frogs: morphogenesis, homeotic transformations, digit reduction and the forelimb-hindlimb enigma. Journal of Experimental Zoology (Molecular Development and Evolution), 322 B, 86–105.

    Google Scholar 

Download references

Acknowledgements

We thank Unilever Tea Tanzania, particularly Andrew Mitei, Amiri Kivambe, Sylvia Rutatina, and Charles Kumbemba, for permission to work on the estate and for providing invaluable help with logistics and accommodation. For help in the field, we are indebted to E. Mulungu. Permits to collect and export A. xenodactyloides were issued by the Tanzania Wildlife Research Institute (TAWIRI), the Tanzanian Commission of Science and Technology (COSTECH Permit No. 2009-306-NA-2009-201) and the Wildlife Division of the Tanzanian Ministry of Tourism and Natural Resources. We particularly thank Drs. V. Kakengi, J. Keyyu and K. Oola (TAWIRI) and M. Munshi (COSTECH) for their help and support. For help with logistics, we thank D. Moyer, K. Howell and D. Nkini (Tanzania Conservation Resource Centre). Permits to collect and export A. wahlbergii were issued by Ezemvelo KZN Wildlife (OP4507/2015). We especially thank Adrian Armstrong, Sharon Louw and James Harvey for facilitating fieldwork in KZN and Jane Chennells for permission to work on her property. We thank Lennart Olsson for commenting on an earlier version of the manuscript. Funding was provided through a Putnam Expedition Grant of the Museum of Comparative Zoology and a German Research Foundation grant (DFG MU2914/2-1) to HM and a Museum of Comparative Zoology Grant-in-Aid for Undergraduate Research and the Harvard College Research Program to JGL. Support by a Volkswagen Postdoctoral Fellowship in Evolutionary Biology to HM is gratefully acknowledged. Two anonymous reviewers provided valuable and insightful comments that helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Müller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweiger, S., Naumann, B., Larson, J.G. et al. Direct development in African squeaker frogs (Anura: Arthroleptidae: Arthroleptis) reveals a mosaic of derived and plesiomorphic characters. Org Divers Evol 17, 693–707 (2017). https://doi.org/10.1007/s13127-017-0335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-017-0335-5

Keywords

Navigation