Skip to main content
Log in

Mitochondrial evidence for genetic diversity and low phylogeographic differentiation in the Marsh Warbler Acrocephalus palustris (Aves: Acrocephalidae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

We analyzed the levels of genetic variability in a long-distance migratory reed warbler, the Marsh Warbler Acrocephalus palustris, by using nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I gene (COI; 611 nucleotides [nt]). We obtained sequences from 229 individuals from ten sampling sites that include breeding, wintering, and migrating birds. Overall, 44 haplotypes were detected, which reflect high levels of genetic variation in this species, but most of this variation corresponds to individual differences within collecting sites. We also analyzed 829 nt of cytochrome b (cyt b) from 49 selected individuals of different sampling sites to evaluate the reliability of the COI results. Our analyses based on both mtDNA loci could not detect any population subdivision or phylogeographic structure, indicating high levels of gene flow between breeding sites (Nm = 13.69). The split between the Marsh Warbler and its sister species, the Eurasian Reed Warbler Acrocephalus scirpaceus, could be dated for the Lower Pliocene (about 3.8 million years ago). The time to the most recent common ancestor (TMRCA) among Marsh Warbler haplotypes was estimated as 0.45 million years, indicating their bottleneck during the last glacial periods. Low nucleotide diversity, a shallow phylogenetic tree, a star-like haplotype network, and a unimodal mismatch distribution point to a sudden increase of the effective population size (probably after the last glaciation period) and a recent range expansion likely from a single refuge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arbogast, B. S., Drovetski, S. V., Curry, R. L., Boag, P. T., Seutin, G., Grant, P. R., et al. (2006). The origin and diversification of Galápagos mockingbirds. Evolution, 60, 370–382.

    Article  PubMed  Google Scholar 

  • Avise, J. (1989). Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution, 43, 1192–1208.

    Article  Google Scholar 

  • Avise, J. (2000). Phylogeography: the history and formation of species. Cambridge: Harvard University Press.

    Google Scholar 

  • Avise, J., & Walker, D. (1998). Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society of London B, 265, 457–463.

    Article  CAS  Google Scholar 

  • Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.

    Article  CAS  PubMed  Google Scholar 

  • BirdLife, 2009. Species factsheet: Acrocephalus palustris. Downloaded from http://www.birdlife.org on 20/5/2009.

  • BirdLife, 2012. Acrocephalus palustris. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2. <www.iucnredlist.org> Downloaded on 18 April 2014.

  • Birky, C. W., Maruyama, T., & Fuerst, P. (1983). An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts and some results. Genetics, 103, 513–527.

    PubMed Central  PubMed  Google Scholar 

  • del Hoyo, J., Elliott, A., & Sargatal, J. (2006). Handbook of the birds of the world. Old world flycatchers to old world warblers. Barcelona: Lynx Edicions.

    Google Scholar 

  • Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 1–8.

    Article  Google Scholar 

  • Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185–1192.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, S. V. (1993). Long-distance gene flow in a cooperative breeder detected in genealogies of mitochondrial DNA sequences. Proceedings of the Royal Society of London, Series BB, 252, 177–185.

    Article  CAS  Google Scholar 

  • Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resource, 10, 564–567.

    Article  Google Scholar 

  • Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grant, W. S., & Bowen, B. W. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. Heredity, 89, 415–426.

    Article  Google Scholar 

  • Grinnell, J. (1922). The role of the “Accidental”. Auk, 39, 373–380.

    Article  Google Scholar 

  • Hackett, S. J. (1996). Molecular phylogenetics and biogeography of tanagers in the genus Ramphocelus (Aves). Molecular Phylogenetics and Evolution, 5, 368–382.

    Article  CAS  PubMed  Google Scholar 

  • Hall, T. (1999). BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95 ⁄ 98 ⁄ NT. Nucleic Acids Research, 41, 95–98.

    CAS  Google Scholar 

  • Hansson, B., Hasselquist, D., Tarka, M., Zehtindjiev, P., & Bensch, S. (2008). Postglacial colonisation patterns and the role of isolation and expansion in driving diversification in a passerine bird. PLoS ONE, 3, e2794.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hedrick, P. W. (2000). Genetics of populations. Boston: Jones and Bartlett Publishers.

    Google Scholar 

  • Helbig, A. J. (2003). Evolution of bird migration: a phylogenetic and biogeographic perspective. In P. Berthold, E. Gwinner, & E. Sonnenschein (Eds.), Avian migration. Berlin: Springer.

    Google Scholar 

  • Helbig, A. J., Martens, J., Seibold, I., Henning, F., Schottler, B., & Wink, M. (1996). Phylogeny and species limits in the Palaearctic chiffchaff Phylloscopus collybita complex: Mitochondrial genetic differentiation and bioacoustic evidence. Ibis, 138, 650–666.

    Google Scholar 

  • Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. B., 359, 183–195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hogner, S., Sæther, S., Borge, T., Bruvik, T., Johnsen, A., Sætre, G., 2012. Increased divergence but reduced variation on the Z chromosome relative to autosomes in Ficedula flycatchers: differential introgression or the faster-Z effect? Ecology and Evolution. 2, 379–396.

  • Hudson, R., Slatkin, M., & Maddison, W. (1992). Estimation of levels of gene flow from DNA sequence data. Genetics, 132, 583–589.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchison, D., & Templeton, A. (1999). Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53, 1898–1914.

    Article  Google Scholar 

  • Johnsen, A., Rindal, E., Ericson, P., Zuccon, D., Kerr, K., Stoeckle, M., et al. (2010). DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species. Journal of Ornithology, 151, 565–578.

    Article  Google Scholar 

  • Kerr, K. C., Birks, S. M., Kalyakin, M. V., Red'kin, Y. A., Koblik, E. A., & Hebert, P. D. (2009). Filling the gap—COI barcode resolution in Eastern Palearctic birds. Frontiers in Zoology, 6, 29.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kocher, T., Thomas, W., Meyer, A., Edwards, S., Pääbo, S., Villablanca, F., et al. (1989). Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America, 86, 6196–6200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koskimies, P. (1980). Breeding biology of Blyth’s reed warbler Acrocephalus dumetorum in SE Finland. Ornis Fennica, 57, 26–32.

    Google Scholar 

  • Kryukov, A. P. (2010). Comparative phylogeographic patterns of several vertebrates in the East Palearctic. Moscow University Biological Sciences Bulletin, 65, 184–186.

    Article  Google Scholar 

  • Kvist, L., Ponnikas, S., Belda, E., Encabo, I., Martínez, E., Onrubia, A., et al. (2011). Endangered subspecies of the Reed Bunting (Emberiza schoeniclus witherbyi and E. s. lusitanica) in Iberian Peninsula have different genetic structures. Journal of Ornithology, 152, 681–693.

    Article  Google Scholar 

  • Lehtonen, P. K., Laaksonen, T., Artemyev, A. V., Belskii, E., Both, C., Bureš, S., et al. (2009). Geographic patterns of genetic differentiation and plumage colour variation are different in the pied flycatcher Ficedula hypoleuca. Molecular Ecology, 18, 4463–4476.

    Article  PubMed  Google Scholar 

  • Leisler, B., & Schulze-Hagen, K. (2011). The reed warblers: Diversity in a uniform bird family. Zeist: KNNV Publishing.

    Google Scholar 

  • Leisler, B., Heidrich, P., Schulze-Hagen, K., & Wink, M. (1997). Taxonomy and phylogeny of reed warblers (genus Acrocephalus) based on mtDNA sequences and morphology. Journal of Ornithology, 138, 469–496.

    Article  Google Scholar 

  • Lemaire, F. (1977). Mixed song, interspecific competition and hybridization in the reed and marsh warbler (Acrocephalus scirpaceus and palustris). Behaviour, 79, 215–240.

    Article  Google Scholar 

  • Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Lifjeld, J. T., Marthinsen, G., Myklebust, M., Dawson, D. A., & Johnsen, A. (2010). A wild marsh warbler × Sedge warbler hybrid (Acrocephalus palustris × A. schoenobaenus) in Norway documented with molecular markers. Journal of Ornithology, 151, 513–517.

    Article  Google Scholar 

  • Lindholm, A., Bensch, S., Dowsett-Lemaire, F., Forsten, A., & Kärkkäinen, H. (2007). Hybrid marsh × Blyth's reed warbler with mixed song in Finland in June 2003. Dutch Birding, 29, 223–231.

    Google Scholar 

  • Loon, A. J., & Keijl, G. O. (2001). Blyth's reed warbler at Nieuwegein in June-July 1998. Dutch Birding, 23, 83–85.

    Google Scholar 

  • Neto, J., Arroyo, J., Bargain, B., Monrós, J., Mátrai, N., Procházka, P., et al. (2012). Phylogeography of a habitat specialist with high dispersal capability: the Savi’s warbler Locustella luscinioides. PLoS ONE, 7, e38497.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Otterbeck, A., Svein Dale, S., Lindén, A., & Marthinsen, G. (2013). A male reed warbler and marsh warbler hybrid Acrocephalus scirpaceus × A. palustris in Norway documented with molecular methods. Ornis Norvegica, 36, 6–13.

    Google Scholar 

  • Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  • Procházka, P., Stokke, B. G., Jensen, H., Fainová, D., Bellinvia, E., Fossoy, F., et al. (2011). Low genetic differentiation among reed warbler Acrocephalus scirpaceus populations across Europe. Journal of Avian Biology, 42, 103–113.

    Article  Google Scholar 

  • Ramakrishnan, A., Musial, T., & Cruzan, M. (2010). Shifting dispersal modes at an expanding species’ range margin. Molecular Ecology, 19, 1134–1146.

    Article  PubMed  Google Scholar 

  • Ramos-Onsins, S., & Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19, 2092–2100.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, A. R. (1995). Genetic evidence for a Pleistocene population explosion. Evolution, 49, 608–615.

    Article  Google Scholar 

  • Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569.

    CAS  PubMed  Google Scholar 

  • Ruegg, K., & Smith, T. (2002). Not as the crow flies: a historical explanation for circuitous migration in Swainson’s thrush (Catharus ustulatus). Proceedings of the Royal Society of London B, 269, 1375–1381.

    Article  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sheldon, F. H., Lohman, D. J., Lim, H. C., Zou, F., Goodman, S. M., Prawiradilaga, D. M., et al. (2009). Phylogeography of the magpie-robin species complex (Aves: Turdidae: Copsychus) reveals a Philippine species, an interesting isolating barrier and unusual dispersal patterns in the Indian Ocean and Southeast Asia. Journal of Biogeography, 36, 1070–1083.

    Article  Google Scholar 

  • Slatkin, M., & Hudson, R. (1991). Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129, 555–562.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, evolutionary distance, and Maximum Parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor, S.A., Patirana, A., Birt, T., Friesen, V., 2012. Cryptic introgression between murre sister species (Uria spp.) in the Pacific low Arctic: frequency, cause, and implications. Polar Biology, 931–940.

  • Thompson, J., Higgins, D., & Gibson, T. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trnka, A. (2004). Occurrence of the Blyth’s reed warbler (Acrocephalus dumetorum) in Europe—is there an expansion to the west of its breeding range? Sylvia, 40, 119–123.

    Google Scholar 

  • Wang, J. (2004). Application of the one-migrant-per-generation rule to conservation and management. Conservation Biology, 18, 332–343.

    Article  Google Scholar 

  • Webb, T. I., & Bartlein, P. J. (1992). Global changes during the last 3 million years: Climatic controls and biotic responses. Annual Review of Ecological Systems, 23, 141–173.

    Google Scholar 

  • Weir, J. T., & Schluter, D. (2008). Calibrating the avian molecular clock. Molecular Ecology, 17, 2321–2328.

    Article  CAS  PubMed  Google Scholar 

  • Zehtindjiev, P., Ilieva, M., Hansson, B., Oparinam, O., Oparin, M., & Bensch, S. (2011). Population genetic structure in the paddyfield warbler (Acrocephalus agricola Jerd.). Current Zoology, 57, 63–71.

    CAS  Google Scholar 

  • Zink, R. M. (1994). The geography of mitochondrial DNA variation, population structure, hybridization, and species limits in the fox sparrow (Passerella iliaca). Evolution, 48, 96–111.

    Article  Google Scholar 

  • Zink, R. (1996). Comparative phylogeography in North American birds. Evolution, 50, 308–317.

    Article  Google Scholar 

  • Zink, R., Rohwer, S., Drovetski, S., Blackwell-Rago, R. C., & Farrell, S. (2002). Holarctic phylgeography and species limits of Three-toed Woodpeckers. Condor, 104, 167–170.

    Article  Google Scholar 

  • Zink, R., Pavlova, A., Drovetski, S., & Rohwer, S. (2008). Mitochondrial phylogeographies of five widespread Eurasian bird species. Journal of Ornithology, 149, 399–413.

    Article  Google Scholar 

Download references

Acknowledgments

We thank bird ringers listed in Table 1 for providing samples. We also thank IPMB assistants Heidi Staudter and Hedwig Sauer-Gürth for their help in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Arbabi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 30 kb)

Table S2

(DOCX 28.9 kb)

Table S3

(DOC 45.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbabi, T., Gonzalez, J. & Wink, M. Mitochondrial evidence for genetic diversity and low phylogeographic differentiation in the Marsh Warbler Acrocephalus palustris (Aves: Acrocephalidae). Org Divers Evol 14, 409–417 (2014). https://doi.org/10.1007/s13127-014-0177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-014-0177-3

Keywords

Navigation