Skip to main content
Log in

Climatic correlates of body size in European tenebrionid beetles (Coleoptera: Tenebrionidae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Tenebrionidae are one of the largest families of beetles and are known for their adaptations to hot and dry climates. An increase in body size also increases the volume/surface area ratio, which reduces transpiration, and hence water loss. If an increase in body size is an important adaptation in tenebrionids to cope with increasing aridity, we expect a correlation between body size and climatic gradients in the major tenebrionid clades. Alternatively, we can postulate that arid climates do not drive body size evolution, but rather select, from a wider fauna containing species of any size, those that have larger bodies. In this case we expect that drier regions will host faunas that contain, on average, larger species. To test the first hypothesis, we correlated inter-specific body size variation in the main tenebrionid clades with climatic gradients in Europe. We found only weak trends. To test the second hypothesis, we regressed mean body size of European country faunas against climatic characteristics. We found a strong increase in body size in southern faunas experiencing hot and dry climates. Therefore, increase in body size is not a major adaptation in tenebrionid evolution, but climate is an important filtering factor that determines a prevalence of larger species in southern Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aalbu, R. L., Triplehorn, C. A., Campbell, J. M., Brown, K. W., Somerby, R. A., & Thomas, D. B. (2002). Family 106. Tenebrionidae Latreille 1802. In R. H. Arnett Jr., M. C. Thomas, P. E. Skelley, & J. H. Frank (Eds.), American Beetles. Volume 2. Polyphaga: Scarabaeoidea through Curculionoidea (pp. 463–509). Boca Raton: CRC.

    Chapter  Google Scholar 

  • Baselga, A. (2008). Determinants of species richness, endemism and turnover in European longhorn beetles. Ecography, 31, 263–271.

    Article  Google Scholar 

  • Cabrero-Sañudo, F. J. (2012). Composition and distribution patterns of species at a global biogeographic region scale: Biogeography of Aphodiini dung beetles (Coleoptera, Scarabaeidae) based on species geographic and taxonomic data. In L. Stevens (Ed.), Global advances in biogeography (pp. 329–360). Rijeka: InTech.

    Google Scholar 

  • Chown, S. L. (1993). Desiccation resistance in six sub-Antarctic weevils (Coleoptera: Curculionidae): humidity as an abiotic factor influencing assemblage structure. Functional Ecology, 7, 318–325.

    Article  Google Scholar 

  • Condamine, F. L., Soldati, L., Rasplus, J.-Y., & Kergoat, G. J. (2011). New insights on systematics and phylogenetics of Mediterranean Blaps species (Coleoptera: Tenebrionidae: Blaptini), assessed through morphology and dense taxon sampling. Systematic Entomology, 36, 340–361.

    Article  Google Scholar 

  • Cope, E. D. (1887). The origin of the fittest: essays on evolution. New York: Appleton.

    Book  Google Scholar 

  • Davis, A. L. V., Scholtz, C. H., & Philips, T. K. (2002). Historical biogeography of scarabaeine dung beetles. Journal of Biogeography, 29, 1217–1256.

    Article  Google Scholar 

  • De Los Santos, A., Gómez-González, L. A., Alonso, C., Arbelo, C. D., & De Nicolás, J. P. (2000). Adaptive trends of darkling beetles (Col. Tenebrionidae) on environmental gradients on the island of Tenerife (Canary Islands). Journal of Arid Environments, 45, 85–98.

    Article  Google Scholar 

  • Devictor, V., van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D., Heliölä, J., et al. (2012). Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2, 121–124.

    Article  Google Scholar 

  • Digby, P. S. B. (1955). Factors affecting the temperature excess of insects in sunshine. Journal of Experimental Biology, 32, 279–298.

    Google Scholar 

  • Doyen, J. T. (1993). Cladistic relationships among Pimeliine Tenebrionidae (Coleoptera). Journal of the New York Entomological Society, 101, 443–514.

    Google Scholar 

  • Doyen, J. T., & Rogers, E. (1984). Environmental determinants of size variation in Eusattus muricatus (Coleoptera: Tenebrionidae). Journal of the Kansas Entomological Society, 57(3), 483–489.

    Google Scholar 

  • Doyen, J. T., & Tschinkel, W. R. (1982). Phenetic and cladistic relationships among tenebrionid beetles (Coleoptera). Systematic Entomology, 7, 127–183.

    Article  Google Scholar 

  • Entling, W., Schmidt-Entling, M. H., Bacher, S., Brandl, R., & Nentwig, W. (2010). Body size - climate relationships of European spiders. Journal of Biogeography, 37, 477–485.

    Article  Google Scholar 

  • Fattorini, S. (2000). Dispersal, vicariance and refuges in the Anatolian Pimeliinae (Coleoptera, Tenebrionidae): remarks on some biogeographical tenets. Biogeographia, 21, 355–398.

    Google Scholar 

  • Fattorini, S. (2008). Ecology and conservation of tenebrionid beetles in Mediterranean coastal areas. In S. Fattorini (Ed.), Insect ecology and conservation (pp. 165–297). Trivandrum: Research Signpost.

    Google Scholar 

  • Fattorini, S., & Baselga, A. (2012). Species richness and turnover patterns in European tenebrionid beetles. Insect Conservation and Diversity, 5, 331–345.

    Article  Google Scholar 

  • Fattorini, S., & Ulrich, W. (2012a). Drivers of species richness in European Tenebrionidae (Coleoptera). Acta Oecologica, 43, 22–28.

    Article  Google Scholar 

  • Fattorini, S., & Ulrich, W. (2012b). Spatial distributions of European Tenebrionidae point to multiple postglacial colonization trajectories. Biological Journal of the Linnean Society, London, 105, 318–329.

    Article  Google Scholar 

  • Fattorini, S., Sciotti, A., Tratzi, P., & Di Giulio, A. (2013a). Species distribution, ecology, abundance, body size and phylogeny originate interrelated rarity patterns at regional scale. Journal of Zoological Systematics and Evolutionary Research, 51, 279–286.

    Google Scholar 

  • Fattorini, S., Lo Monaco, R., Di Giulio, A., & Ulrich, W. (2013b). Latitudinal trends in body length distributions of European darkling beetles (Tenebrionidae). Acta Oecologica, 53, 88–94.

    Article  Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.

    Article  Google Scholar 

  • Ferrer, J. (2008). Contribución al conocimiento de los Asinini iberobaleares. Segunda nota. Las Alphasida (Glabrasida) del grupo Tricostatae Escalera 1922 (Coleoptera, Tenebrionidae, Pimeliinae). Boletín Sociedad Entomológica Aragonesa, 43, 61–73.

    Google Scholar 

  • Ferrer, J. (2011). Contribución al conocimiento del Género Phylan dejean, 1821, y descripción de una especie nueva del género Heliopates Dejean, 1834 (Coleoptera, Tenebrionidae, Pedinini). Boletín Sociedad Entomológica Aragonesa, 49, 75–82.

    Google Scholar 

  • Hadley, N. F. (1994). Water relations of terrestrial arthropods. San Diego: Academic Press.

    Google Scholar 

  • Homburg, K., Schuldt, A., Drees, C., & Assmann, T. (2012). Broad-scale geographic patterns in body size and hind wing development of western Palaearctic carabid beetles (Coleoptera: Carabidae). Ecography, 36, 166–177.

    Article  Google Scholar 

  • Knouft, J. H. (2004). Latitudinal variation in the shape of the species body size distribution: an analysis using freshwater fishes. Qecologia, 139, 408–417.

    Google Scholar 

  • Köhler, F. (1996) Zur Käferfauna (Col.) des Korretsberges und des Michelberges im Mittelrheintal. Mitteilungen der Arbeitsgemeinschaft Rheinischer Koleopterologen (Bonn) 6, 3–36.

  • Krasnov, B., Ward, D., & Shenbrot, G. (1996). Body size and leg length variation in several species of darkling beetles (Coleoptera: Tenebrionidae) along a rainfall and altitudinal gradient in the Negev Desert (Israel). Journal of Arid Environments, 34, 477–489.

    Article  Google Scholar 

  • Levkaničová, Z. (2009). Molecular phylogeny of the superfamily Tenebrionoidea (Coleoptera: Cucujiformia). Ph.D. Thesis. Olomouc: Faculty of Science, Department of Zoology and Anthropology, Palacký University.

  • Löbl, I., & Smetana, A. (2008). Catalogue of palaearctic coleoptera. Volume 5. Tenebrionoidea. Stenstrup: Apollo Books.

    Google Scholar 

  • Lomolino, M. V., Riddle, B. R., Whittaker, R. J., & Brown, J. H. (2010). Biogeography (Forthth ed.). Sunderland: Sinauer.

    Google Scholar 

  • Marcuzzi, G. (1960). Rapporti tra equilibrio idrico e ambiente nei Coleotteri Tenebrionidi. Archivio Zoologico Italiano, 45, 325–342.

    Google Scholar 

  • Meiri, S., Dayan, T., & Simberloff, D. (2005). Biogeographical patterns in the Western Palearctic: the fasting-endurance hypothesis and the status of Murphy’s rule. Journal of Biogeography, 32, 369–375.

    Article  Google Scholar 

  • Murphy, E. L. (1985). Bergmann’s rule, seasonality and geographic variation in body size of house sparrows. Evolution, 39, 1327–1334.

    Article  Google Scholar 

  • Olson, V. A., Davies, R. G., Orme, C. D. L., Thomas, G. H., Meiri, S., Blackburn, T. M., et al. (2009). Global biogeography and ecology of body size in birds. Ecology Letters, 12, 249–259.

    Article  PubMed  Google Scholar 

  • Peat, J., Darvill, B., Ellis, J., & Goulson, D. (2005). Effects of climate on intra- and interspecific size variation in bumble bees. Functional Ecology, 19, 145–151.

    Article  Google Scholar 

  • Penev, L. (1996). Large-scale variation in carabid assemblages, with special reference to the local fauna concept. Annales Zoologici Fennici, 33, 49–63.

    Google Scholar 

  • Pons, J., Bruvo, B., Petitpierre, E., Plohl, M., Ugarkovic, D., & Juan, C. (2004). Complex structural features of satellite DNA sequences in the genus Pimelia (Coleoptera: Tenebrionidae): random differential amplification from a common ‘satellite DNA library’. Heredity, 92, 418–427.

    Article  CAS  PubMed  Google Scholar 

  • Rangel, T.F.L., Diniz-Filho, J.A.F., Bini, L.M. (2010). SAM: a comprehensive application for Spatial Analysis in Macroecology Ecography, 33, 46–50.

  • Ryder, O. A. (1986). Species conservation and systematics: the dilemma of subspecies. Trends in Ecology and Evolution, 1, 9–10.

    Article  Google Scholar 

  • Soldati, F., & Soldati, L. (2006). Species delimitation using morphological and molecular tools in the Asida (Polasida) jurinei Solier, 1836 species-complex. Preliminary results. (Coleoptera: Tenebrionidae: Tentyrinae). Cahiers Scientifiques Muséum Lyon, 10, 111–116.

    Google Scholar 

  • Speight, M. R., Hunter, M. D., & Watt, A. D. (2008). Ecology of insects (2nd ed.). Oxford: Wiley-Blackwell.

    Google Scholar 

  • Stevenson, R. D. (1985). Body size and limits to the daily range of body temperature in terrestrial ectotherms. American Naturalist, 125, 102–117.

    Article  Google Scholar 

  • Stroscio, S., Baviera, C., Frati, F., Lo Paro, G., & Nardi, F. (2011). Deep genetic divergence in the darkling beetle Pimelia rugulosa (Coleoptera, Tenebrionidae) reflects Plio-Pleistocenic paleogeographic history of Sicily. Journal of Zoological Systmatics and Evolutionary Research, 49, 196–203.

    Article  Google Scholar 

  • Trichas, A. (2008). The genus Dendarus Latreille, 1829 (Coleoptera, Tenebrionidae: Dendarini) in Greece (A systematic account of the genus with description of a new species and four new systematic combinations). In: S. E. Makarov, Dimitrijević, R. N. (Eds.), Advances in arachnology and developmental biology (pp. 417–462). Belgrade: SASA, Belgrade & UNESCO MAB Serbia.

  • Ulrich, W., & Fiera, C. (2010). Environmental correlates of body size distributions of European springtails (Hexapoda: Collembola). Global Ecology and Biogeography, 19, 905–915.

    Article  Google Scholar 

Download references

Acknowledgments

We are particularly grateful to M. Lillig for his invaluable help in finding many references reporting body length measures. We thank the following people for providing unpublished faunal data and/or for checking regional faunal lists used in this study: O. R. Alexandrovitch (Belarus), B. Gustafsson (Denmark, Norway, Finland, Sweden), P. Leo (France, Italy, Greece, Spain, overall distribution of many species and comments about completeness of inventories), and F. Soldati (France, Italy, Romania, Greece), who also provided some body length measures. We are very grateful to two anonymous referees for their constructive comments. H. Pearson kindly improved our English.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Fattorini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(DOC 73 kb)

Online Resource 2

(DOC 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fattorini, S., Lo Monaco, R., Di Giulio, A. et al. Climatic correlates of body size in European tenebrionid beetles (Coleoptera: Tenebrionidae). Org Divers Evol 14, 215–224 (2014). https://doi.org/10.1007/s13127-013-0164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-013-0164-0

Keywords

Navigation