Skip to main content

Advertisement

Log in

The role of exosome derived miRNAs in inter-cell crosstalk among insulin-related organs in type 2 diabetes mellitus

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Exosomes are small extracellular vesicles secreted by almost all cell types, and carry diverse cargo including RNA, and other substances. Recent studies have focused exosomal microRNAs (miRNAs) on various human diseases, including type 2 diabetes mellitus (T2DM) and metabolic syndrome (METS) which accompany the occurrence of insulin resistance. The regulation of insulin signaling has connected with some miRNA expression which play a significant regulatory character in insulin targeted cells or organs, such as fat, muscle, and liver. The miRNAs carried by exosomes, through the circulation in the body fluids, mediate all kinds of physiological and pathological process involved in the human body. Studies have found that exosome derived miRNAs are abnormally expressed and cross-talked with insulin targeted cells or organs to affect insulin pathways. Further investigations of the mechanisms of exosomal miRNAs in T2DM will be valuable for the diagnostic biomarkers and therapeutic targets of T2DM. This review will summarize the molecular mechanism of action of the miRNAs carried by exosomes which are secreted from insulin signaling related cells, and elucidate the pathogenesis of insulin resistance to provide a new strategy for the potential diagnostic biomarkers and therapeutic targets for the type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. An P, Peng Q, Guo T, Xing PC, Zhao LD, Zhou MJ (2020) Potential influence of miR-192 on the efficacy of saxagliptin treatment in T2DM complicated with non-alcoholic fatty liver disease. J Biol Regul Homeost Agents 34(4):1411–1415. https://doi.org/10.23812/20-147-L

    Article  CAS  PubMed  Google Scholar 

  2. Aswad H, Forterre A, Wiklander OP et al (2014) Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia 57(10):2155–2164. https://doi.org/10.1007/s00125-014-3337-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barile L, Lionetti V, Cervio E et al (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103(4):530–541. https://doi.org/10.1093/cvr/cvu167

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beltrami C, Besnier M, Shantikumar S et al (2017) Human pericardial fluid contains exosomes enriched with cardiovascular-expressed micrornas and promotes therapeutic angiogenesis. Mol Ther 25(3):679–693. https://doi.org/10.1016/j.ymthe.2016.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101. https://doi.org/10.1038/nsmb1167

    Article  CAS  PubMed  Google Scholar 

  7. Bosque A, Dietz L, Gallego-Lleyda A et al (2016) Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein. Oncotarget. 7(20):29287–29305. https://doi.org/10.18632/oncotarget.8678

    Article  PubMed  PubMed Central  Google Scholar 

  8. Broussard JL, Castro AV, Iyer M et al (2016) Insulin access to skeletal muscle is impaired during the early stages of diet-induced obesity. Obesity (Silver Spring) 24:1922–1928. https://doi.org/10.1002/oby.21562

    Article  CAS  PubMed  Google Scholar 

  9. Castaño C, Kalko S, Novials A, Párrizas M (2018) Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci USA 115(48):12158–12163. https://doi.org/10.1073/pnas.1808855115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Castaño C, Mirasierra M, Vallejo M, Novials A, Párrizas M (2020) Delivery of muscle-derived exosomal miRNAs induced by HIIT improves insulin sensitivity through down-regulation of hepatic FoxO1 in mice. Proc Natl Acad Sci USA 117(48):30335–30343. https://doi.org/10.1073/pnas.2016112117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190(6):1079–1091. https://doi.org/10.1083/jcb.201002049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chakraborty C, Doss CG, Bandyopadhyay S, Agoramoorthy G (2014) Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA 5(5):697–712. https://doi.org/10.1002/wrna.1240

    Article  CAS  PubMed  Google Scholar 

  13. Chang W, Wang J (2019) Exosomes and their noncoding RNA cargo are emerging as new modulators for diabetes mellitus. Cells 8(8):853. https://doi.org/10.3390/cells8080853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen B, Sang Y, Song X et al (2021) Exosomal miR-500a-5p derived from cancer-associated fibroblasts promotes breast cancer cell proliferation and metastasis through targeting USP28. Theranostics 11(8):3932–3947. https://doi.org/10.7150/thno.53412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colombo M, Moita C, van Niel G et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(Pt 24):5553–5565. https://doi.org/10.1242/jcs.128868

    Article  CAS  PubMed  Google Scholar 

  16. Dai J, Su Y, Zhong S et al (2020) Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 5(1):145. https://doi.org/10.1038/s41392-020-00261-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dang SY, Leng Y, Wang ZX et al (2019) Exosomal transfer of obesity adipose tissue for decreased miR-141-3p mediate insulin resistance of hepatocytes. Int J Biol Sci 15(2):351–368. https://doi.org/10.7150/ijbs.28522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Jong OG, Verhaar MC, Chen Y et al (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 16:1. https://doi.org/10.3402/jev.v1i0.18396

    Article  CAS  Google Scholar 

  19. Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131(6):1097–1108. https://doi.org/10.1016/j.cell.2007.10.032

    Article  CAS  PubMed  Google Scholar 

  20. Ding X, Jian T, Wu Y et al (2019) Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway. Biomed Pharmacother 110:85–94. https://doi.org/10.1016/j.biopha.2018.11.018

    Article  CAS  PubMed  Google Scholar 

  21. Dos Santos B, Estadella D, Hachul AC et al (2013) Effects of a diet enriched with polyunsaturated, saturated, or trans fatty acids on cytokine content in the liver, white adipose tissue, and skeletal muscle of adult mice. Mediat Inflamm 2013:594958. https://doi.org/10.1155/2013/594958

    Article  CAS  Google Scholar 

  22. Duan YR, Chen BP, Chen F, Yang SX, Zhu CY, Ma YL, Li Y, Shi J (2021) Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte. J Cell Mol Med 25(23):10798–10813. https://doi.org/10.1111/jcmm.14558

    Article  CAS  PubMed  Google Scholar 

  23. Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127. https://doi.org/10.1074/jbc.273.32.20121

    Article  CAS  PubMed  Google Scholar 

  24. Fan C, Li Y, Lan T, Wang W, Long Y, Yu SY (2022) Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression. Mol Ther 30(3):1300–1314. https://doi.org/10.1016/j.ymthe.2021.11.006

    Article  CAS  PubMed  Google Scholar 

  25. Feng T, Li K, Zheng P et al (2019) Weighted gene coexpression network analysis identified microrna coexpression modules and related pathways in type 2 diabetes mellitus. Oxidative Med Cell Longev 13(2019):9567641. https://doi.org/10.1155/2019/9567641

    Article  CAS  Google Scholar 

  26. Gallagher EJ, Leroith D, Karnieli E (2010) Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med 77:511–523. https://doi.org/10.1002/msj.20212

    Article  PubMed  Google Scholar 

  27. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20(1):21–37. https://doi.org/10.1038/s41580-018-0045-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goedeke L, Perry RJ, Shulman GI (2019) Emerging pharmacological targets for the treatment of nonalcoholic fatty liver disease, insulin resistance, and type 2 diabetes. Annu Rev Pharmacol Toxicol 59:65–87. https://doi.org/10.1146/annurev-pharmtox-010716-104727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gong H, Chen H, Xiao P et al (2022) miR-146a impedes the anti-aging effect of AMPK via NAMPT suppression and NAD+/SIRT inactivation. Signal Transduct Target Ther 7(1):66. https://doi.org/10.1038/s41392-022-00886-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Greenberg AS, Reeves AR (2021) The good and bad of adipose tissue macrophage exosomes in obesity. Cell Metab 33(4):700–702. https://doi.org/10.1016/j.cmet.2021.03.011

    Article  CAS  PubMed  Google Scholar 

  31. Guo X, Asthana P, Gurung S et al (2022) Regulation of age-associated insulin resistance by MT1-MMP-mediated cleavage of insulin receptor. Nat Commun 13(1):3749. https://doi.org/10.1038/s41467-022-31563-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hall E, Volkov P, Dayeh T et al (2014) Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol 15:522. https://doi.org/10.1186/s13059-014-0522-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henne WM, Stenmark H, Emr SD (2013) Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 5(9):a016766. https://doi.org/10.1101/cshperspect.a016766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ho PTB, Clark IM, Le LTT (2022) MicroRNA-based diagnosis and therapy. Int J Mol Sci 23(13):7167. https://doi.org/10.3390/ijms23137167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Indrakusuma I, Sell H, Eckel J (2015) Novel mediators of adipose tissue and muscle crosstalk. Curr Obes Rep 4(4):411–417. https://doi.org/10.1007/s13679-015-0174-7

    Article  PubMed  Google Scholar 

  36. Ji J, Qin Y, Ren J et al (2015) Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN. Sci Rep 9(5):16262. https://doi.org/10.1038/srep16262

    Article  CAS  Google Scholar 

  37. Ji Y, Luo Z, Gao H et al (2021) Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075. Nat Metab 3(9):1163–1174. https://doi.org/10.1038/s42255-021-00444-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim Y, Kim OK (2021) Potential roles of adipocyte extracellular vesicle-derived mirnas in obesity-mediated insulin resistance. Adv Nutr 12(2):566–574. https://doi.org/10.1093/advances/nmaa105

    Article  CAS  PubMed  Google Scholar 

  39. Kukreti H, Amuthavalli K (2020) MicroRNA-34a causes ceramide accumulation and effects insulin signaling pathway by targeting ceramide kinase (CERK) in aging skeletal muscle. J Cell Biochem 121(5-6):3070–3089. https://doi.org/10.1002/jcb.29312

    Article  CAS  PubMed  Google Scholar 

  40. Kurtz CL, Peck BC, Fannin EE et al (2014) MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. Diabetes:DB_131015. https://doi.org/10.2337/db13-1015

  41. Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419. https://doi.org/10.1038/nature01957

    Article  CAS  PubMed  Google Scholar 

  42. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670. https://doi.org/10.1093/emboj/cdf476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li D, Song H, Shuo L et al (2020) Gonadal white adipose tissue-derived exosomal MiR-222 promotes obesity-associated insulin resistance. Aging (Albany NY) 12(22):22719–22743. https://doi.org/10.18632/aging.103891

    Article  CAS  PubMed  Google Scholar 

  44. Li W, Jin LY, Cui YB, Xie N (2021) Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-17-3p ameliorates inflammatory reaction and antioxidant injury of mice with diabetic retinopathy via targeting STAT1. Int Immunopharmacol 90:107010. https://doi.org/10.1016/j.intimp.2020.107010

    Article  CAS  PubMed  Google Scholar 

  45. Li W, Li F, Zhang Y et al (2022) X-linked inhibitor of apoptosis protein (xiap)-loaded magnetic mesoporous silica nanoparticles incorporated with miR-233 to improve radio sensitization of cervical cancer cells and promote apoptosis. J Biomed Nanotechnol 18(3):747–753. https://doi.org/10.1166/jbn.2022.3281

    Article  PubMed  Google Scholar 

  46. Liang ZH, Lin SS, Pan NF et al (2023) UCMSCs-derived exosomal circHIPK3 promotes ulcer wound angiogenesis of diabetes mellitus via miR-20b-5p/Nrf2/VEGFA axis. Diabet Med 40(2):e14968. https://doi.org/10.1111/dme.14968

    Article  CAS  PubMed  Google Scholar 

  47. Liu T, Sun YC, Cheng P, Shao HG (2019) Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun 515(2):352–358. https://doi.org/10.1016/j.bbrc.2019.05.113

    Article  CAS  PubMed  Google Scholar 

  48. Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188. https://doi.org/10.1016/j.tcb.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  49. Mastrototaro L, Roden M (2021) Insulin resistance and insulin sensitizing agents. Metabolism 125:154892. https://doi.org/10.1016/j.metabol.2021.154892

    Article  CAS  PubMed  Google Scholar 

  50. Meijer RI, Bakker W, Alta CL et al (2013) Perivascular adipose tissue control of insulin-induced vasoreactivity in muscle is impaired in db/db mice. Diabetes 62(2):590–598. https://doi.org/10.2337/db11-1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830. https://doi.org/10.1038/ncb0910-823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR (2019) Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab 30(4):656–673. https://doi.org/10.1016/j.cmet.2019.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Muthiah A, Angulo MS, Walker NN, Keller SR, Lee JK (2018) Biologically anchored knowledge expansion approach uncovers KLF4 as a novel insulin signaling regulator. PLoS One 13(9):e0204100. https://doi.org/10.1371/journal.pone.0204100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nishiwada S, Cui Y, Sho M et al (2022) Transcriptomic profiling identifies an exosomal microrna signature for predicting recurrence following surgery in patients with pancreatic ductal adenocarcinoma. Ann Surg 276(6):e876–e885. https://doi.org/10.1097/SLA.0000000000004993

    Article  PubMed  Google Scholar 

  55. Niu B, Xia X, Ma L, Yao L, Zhang Y, Su H (2023) LncRNA AC040162.3 promotes HCV-induced T2DM deterioration through the miRNA-223-3p/NLRP3 molecular axis. Anal Cell Pathol (Amst) 17:5350999. https://doi.org/10.1155/2023/5350999

    Article  CAS  Google Scholar 

  56. Pan Y, Hui X, Hoo RLC et al (2019) Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest 129(2):834–849. https://doi.org/10.1172/JCI123069

    Article  PubMed  PubMed Central  Google Scholar 

  57. Qin X, Guo H, Wang X et al (2019) Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol 20(1):12. https://doi.org/10.1186/s13059-018-1604-0

    Article  PubMed  PubMed Central  Google Scholar 

  58. Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172. https://doi.org/10.1084/jem.183.3.1161

    Article  CAS  PubMed  Google Scholar 

  59. Ruan Y, Lin N, Ma Q et al (2018) circulating lncrnas analysis in patients with type 2 diabetes reveals novel genes influencing glucose metabolism and islet β-cell function. Cell Physiol Biochem 46(1):335–350. https://doi.org/10.1159/000488434

    Article  CAS  PubMed  Google Scholar 

  60. Safwat A, Sabry D, Ragiae A, Amer E, Mahmoud RH, Shamardan RM (2018) Adipose mesenchymal stem cells-derived exosomes attenuate retina degeneration of streptozotocin-induced diabetes in rabbits. J Circ Biomark 28(7):1849454418807827. https://doi.org/10.1177/1849454418807827

    Article  CAS  Google Scholar 

  61. Saravanan PB, Vasu S, Yoshimatsu G et al (2019) Differential expression and release of exosomal miRNAs by human islets under inflammatory and hypoxic stress. Diabetologia 62(10):1901–1914. https://doi.org/10.1007/s00125-019-4950-x

    Article  CAS  PubMed  Google Scholar 

  62. Shah MY, Calin GA (2014) MicroRNAs as therapeutic targets in human cancers. Wiley Interdiscip Rev RNA 5(4):537–548. https://doi.org/10.1002/wrna.1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sharma A, Oonthonpan L, Sheldon RD et al (2019) Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. Elife 18(8):e45873. https://doi.org/10.7554/eLife.45873

    Article  Google Scholar 

  64. Shen K, Duan A, Cheng J et al (2022) Exosomes derived from hypoxia preconditioned mesenchymal stem cells laden in a silk hydrogel promote cartilage regeneration via the miR-205-5p/PTEN/AKT pathway. Acta Biomater 143:173–188. https://doi.org/10.1016/j.actbio.2022.02.026

    Article  CAS  PubMed  Google Scholar 

  65. Shi H, Hao X, Sun Y et al (2023) Bone marrow mesenchymal stem cell-derived exosomes reduce insulin resistance and obesity in mice via the PI3K/AKT signaling pathway. FEBS Open Bio 13(6):1015–1026. https://doi.org/10.1002/2211-5463.13615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sira J, Zhang X, Gao L et al (2023) Effects of inorganic arsenic on type 2 diabetes mellitus in vivo: the roles and mechanisms of miRNAs. Biol Trace Elem Res 202(1):111–121. https://doi.org/10.1007/s12011-023-03669-1

    Article  CAS  PubMed  Google Scholar 

  67. Stuffers S, Sem Wegner C, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10(7):925–937. https://doi.org/10.1111/j.1600-0854.2009.00920.x

    Article  CAS  PubMed  Google Scholar 

  68. Su T, Xiao Y, Xiao Y et al (2019) Bone marrow mesenchymal stem cells-derived exosomal MiR-29b-3p regulates aging-associated insulin resistance. ACS Nano 13(2):2450e2462. https://doi.org/10.1021/acsnano.8b09375

    Article  CAS  Google Scholar 

  69. Sun Y, Zhou Y, Shi Y et al (2021) Expression of miRNA-29 in pancreatic β Cells promotes inflammation and diabetes via TRAF3. Cell Rep 34(1):108576. https://doi.org/10.1016/j.celrep.2020.108576

    Article  CAS  PubMed  Google Scholar 

  70. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21. https://doi.org/10.1016/j.ygyno.2008.04.033

    Article  CAS  PubMed  Google Scholar 

  71. Thomou T, Mori MA, Dreyfuss JM et al (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542(7642):450–455. https://doi.org/10.1038/nature21365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tian F, Tang P, Sun Z et al (2020) miR-210 in exosomes derived from macrophages under high glucose promotes mouse diabetic obesity pathogenesis by suppressing NDUFA4 expression. J Diabetes Res 19(2020):6894684. https://doi.org/10.1155/2020/6894684

    Article  CAS  Google Scholar 

  73. Trams EG, Lauter CJ, Salem N Jr, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645(1):63–70. https://doi.org/10.1016/0005-2736(81)90512-5

    Article  CAS  PubMed  Google Scholar 

  74. Viscarra JA, Ortiz RM (2013) Cellular mechanisms regulating fuel metabolism in mammals: role of adipose tissue and lipids during prolonged food deprivation. Metabolism 62(7):889–897. https://doi.org/10.1016/j.metabol.2012.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu J, Dong T, Chen T et al (2020) Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte. Metabolism 103:154006. https://doi.org/10.1016/j.metabol.2019.154006

    Article  CAS  PubMed  Google Scholar 

  76. Xu G, Ji C, Song G et al (2015) MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/AKT pathway. Int J Obes 39(10):1523–1530. https://doi.org/10.1038/ijo.2015.95

    Article  CAS  Google Scholar 

  77. Ye D, Zhang T, Lou G et al (2018) Plasma miR-17, miR-20a, miR-20b and miR-122 as potential biomarkers for diagnosis of NAFLD in type 2 diabetes mellitus patients. Life Sci 1(208):201–207. https://doi.org/10.1016/j.lfs.2018.07.029

    Article  CAS  Google Scholar 

  78. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016. https://doi.org/10.1101/gad.1158803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ying W, Gao H, Dos Reis FCG et al (2021) MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metab 33(4):781–790.e5. https://doi.org/10.1016/j.cmet.2020.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ying W, Riopel M, Bandyopadhyay G et al (2017) Adipose tissue macrophage-derived exosomal mirnas can modulate in vivo and in vitro insulin sensitivity. Cell 171(2):372–384.e12. https://doi.org/10.1016/j.cell.2017.08.035

    Article  CAS  PubMed  Google Scholar 

  81. Yu Y, Du H, Wei S et al (2018) Adipocyte-derived exosomal MIR-27a induces insulin resistance in skeletal muscle through REPRession of PPARγ. Theranostics 8(8):2171–2188. https://doi.org/10.7150/thno.22565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Żbikowski A, Błachnio-Zabielska A, Galli M, Zabielski P (2021) Adipose-derived exosomes as possible players in the development of insulin resistance. Int J Mol Sci 22(14):7427. https://doi.org/10.3390/ijms22147427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang L, Zhang S, Yao J et al (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527(7576):100–104. https://doi.org/10.1038/nature15376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang Q, Qu Y, Zhang Q et al (2023) Exosomes derived from hepatitis B virus-infected hepatocytes promote liver fibrosis via miR-222/TFRC axis. Cell Biol Toxicol 39(2):467–481. https://doi.org/10.1007/s10565-021-09684-z

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y, Liu D, Chen X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144. https://doi.org/10.1016/j.molcel.2010.06.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to acknowledge the help of the Tumor Microenvironment and Immunotherapy Key Laboratory.

Funding

The work was supported by the grants from National Natural Science Foundation of China (Grant No. 81974528 to C.F. Yuan, No. 82174035 to C.F. Yuan, No. 82374107 to C.F. Yuan and No. 81773959 to C.F. Yuan), the innovational group project of Hubei Province Natural Science Foundation in China (Grant No. 2021CFA015 to C.F. Yuan), and the Central Funds Guiding the Local Science and Technology Development (Grant No. 2020ZYYD016 to C.F. Yuan).

Author information

Authors and Affiliations

Authors

Contributions

Ting Lu was responsible for literature search and for the first draft. Ying Zheng, Xiaoling Chen and Zhiyong Lin were involved in manuscript reading and correction, while Chaoqi Liu and Chengfu Yuan were responsible for the last version of the manuscript and are the senior author. “The authors declare that all data were generated in-house and that no paper mill was used”.

Corresponding authors

Correspondence to Chaoqi Liu or Chengfu Yuan.

Ethics declarations

Research involving human participants and/or animals

No.

Informed consent

Non-applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1 Exosome-derived miRNAs are key to insulin resistance and T2DM through crosstalk between insulin target cells and target organs.

2 Exosomes-derived miRNAs exert biological effects by affecting insulin signal transduction of insulin target cells.

3 Exosomes-derived miRNAs may be researchable for diagnostic biomarkers and therapeutic targets of diseases, including T2DM.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Zheng, Y., Chen, X. et al. The role of exosome derived miRNAs in inter-cell crosstalk among insulin-related organs in type 2 diabetes mellitus. J Physiol Biochem (2024). https://doi.org/10.1007/s13105-024-01026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13105-024-01026-x

Keywords

Navigation