Skip to main content

Advertisement

Log in

Guf1 overexpression improves pancreatic β cell functions in type 2 diabetes mellitus rats with Roux-en-Y gastric bypass (RYGB) surgery

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The Roux-en-Y gastric bypass (RYGB) is a one-of-a-kind treatment among contemporary bariatric surgical procedures, and its therapeutic effects for type 2 diabetes mellitus (T2DM) are satisfactory. The present study performed isobaric tags for relative and absolute quantification (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis identifying different proteomics between T2DM rats with or without Roux-en-Y gastric bypass (RYGB) surgery, and GTP binding elongation factor GUF1 (Guf1) was first found to be significantly upregulated in rats from the T2DM plus RYGB group. In the cellular lipotoxicity model induced by palmitic acid stimulation of rat pancreatic beta cell line, INS-1, palmitic acid treatment inhibited cell viability, suppressed GSIS, promoted lipid droplet formation, promoted cell apoptosis, and induced mitochondrial membrane potential loss. The effects of palmitic acid on INS-1 cells mentioned above could be partially eliminated by Guf1 overexpression but aggravated by Guf1 knockdown. Last, under palmitic acid treatment, Guf1 overexpression promotes the PI3K/Akt and NF-κB signaling but inhibits the AMPK activation. Guf1 is upregulated in T2DM rats who received RYGB, and Guf1 overexpression improves cell mitochondrial functions, increases cell proliferation, inhibits cell apoptosis, and promotes cell functions in palmitic acid-treated β cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Polonsky KS (2012) The past 200 years in diabetes. N Engl J Med 367(14):1332–1340

    Article  CAS  PubMed  Google Scholar 

  2. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846

    Article  CAS  PubMed  Google Scholar 

  3. Ye R, Onodera T, Scherer PE (2019) Lipotoxicity and beta cell maintenance in obesity and type 2 diabetes. J Endocr Soc 3(3):617–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yazici D, Sezer H (2017) Insulin resistance, obesity and lipotoxicity. Adv Exp Med Biol 960:277–304

    Article  CAS  PubMed  Google Scholar 

  5. Obeid F et al (2005) Open Roux-en-Y gastric bypass in 925 patients without mortality. Am J Surg 189(3):352–356

    Article  PubMed  Google Scholar 

  6. Hubens G et al (2008) Roux-en-Y gastric bypass procedure performed with the da Vinci robot system: is it worth it? Surg Endosc 22(7):1690–1696

    Article  CAS  PubMed  Google Scholar 

  7. Zhang S et al (2017) Increased beta-Cell mass in obese rats after gastric bypass: a potential mechanism for improving glycemic control. Med Sci Monit 23:2151–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindqvist A et al (2014) Gastric bypass improves beta-cell function and increases beta-cell mass in a porcine model. Diabetes 63(5):1665–1671

    Article  CAS  PubMed  Google Scholar 

  9. Camastra S et al (2011) Early and longer term effects of gastric bypass surgery on tissue-specific insulin sensitivity and beta cell function in morbidly obese patients with and without type 2 diabetes. Diabetologia 54(8):2093–2102

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen KT et al (2015) Preserved insulin secretory capacity and weight loss are the predominant predictors of glycemic control in patients with type 2 diabetes randomized to Roux-en-Y gastric bypass. Diabetes 64(9):3104–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gass M, Beglinger C, Peterli R (2011) Metabolic surgery-principles and current concepts. Langenbecks Arch Surg 396(7):949–972

    Article  CAS  PubMed  Google Scholar 

  12. Dixon JB et al (2011) Bariatric surgery: an IDF statement for obese type 2 diabetes. Diabet Med 28(6):628–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Halu A et al (2018) Context-enriched interactome powered by proteomics helps the identification of novel regulators of macrophage activation. Elife 7:e37059

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee LH et al (2019) XINA: a workflow for the integration of multiplexed proteomics kinetics data with network analysis. J Proteome Res 18(2):775–781

    Article  CAS  PubMed  Google Scholar 

  15. Singh SA et al (2014) Co-regulation proteomics reveals substrates and mechanisms of APC/C-dependent degradation. EMBO J 33(4):385–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bauerschmitt H, Funes S, Herrmann JM (2008) The membrane-bound GTPase Guf1 promotes mitochondrial protein synthesis under suboptimal conditions. J Biol Chem 283(25):17139–17146

    Article  CAS  PubMed  Google Scholar 

  17. Gatmaitan P et al (2010) Pancreatic islet isolation after gastric bypass in a rat model: technique and initial results for a promising research tool. Surg Obes Relat Dis 6(5):532–537

    Article  PubMed  Google Scholar 

  18. Qi Y et al (2016) Quantitative proteomics reveals FLNC as a potential progression marker for the development of hepatocellular carcinoma. Oncotarget 7(42):68242–68252

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kinner A et al (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36(17):5678–5694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nagelkerke, A. and P.N. Span, Staining against phospho-H2AX (γ-H2AX) as a marker for DNA damage and genomic instability in cancer tissues and cells. Adv Exp Med Biol, 2016. 899.

  21. Rohlenova K, Neuzil J, Rohlena J (2016) The role of Her2 and other oncogenes of the PI3K/AKT pathway in mitochondria. Biol Chem 397(7):607–615

    Article  CAS  PubMed  Google Scholar 

  22. Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135

    Article  CAS  PubMed  Google Scholar 

  23. Tattoli I et al (2008) NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production. EMBO Rep 9(3):293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seth RB et al (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669–682

    Article  CAS  PubMed  Google Scholar 

  25. Luo P et al (2016) Metabolomics study of Roux-en-Y gastric bypass surgery (RYGB) to treat Type 2 diabetes patients based on ultraperformance liquid chromatography-mass spectrometry. J Proteome Res 15(4):1288–1299

    Article  CAS  PubMed  Google Scholar 

  26. Arima N et al (2020) Multiorgan systems study reveals Igfbp7 as a suppressor of gluconeogenesis after gastric bypass surgery. J Proteome Res 19(1):129–143

    Article  CAS  PubMed  Google Scholar 

  27. Zhou X et al (2020) Quantitative proteomic analysis of porcine intestinal epithelial cells infected with porcine deltacoronavirus using iTRAQ-coupled LC-MS/MS. J Proteome Res 19(11):4470–4485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao Z et al (2019) iTRAQ-based comparative proteomic analysis of cells infected with Eimeria tenella sporozoites. Parasite (Paris, France) 26:7

    Article  PubMed  Google Scholar 

  29. Xia H et al (2021) Exploration of identifying novel serum biomarkers for malignant mesothelioma using iTRAQ combined with 2D-LC-MS/MS. Environ Res 193:110467

    Article  CAS  PubMed  Google Scholar 

  30. Sun X et al (2019) Differential protein expression profiling by iTRAQ-2D-LC-MS/MS of rats treated with oxaliplatin. J Cell Biochem 120(10):18128–18141

    Article  CAS  PubMed  Google Scholar 

  31. Leloup C et al (2009) Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 58(3):673–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Las G, Oliveira MF, Shirihai OS (2020) Emerging roles of beta-cell mitochondria in type-2-diabetes. Mol Aspects Med 71:100843

    Article  CAS  PubMed  Google Scholar 

  33. Coen PM et al (2015) Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning, and insulin sensitivity after gastric bypass surgery. Diabetes 64(11):3737–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verbeek J et al (2015) Roux-en-y gastric bypass attenuates hepatic mitochondrial dysfunction in mice with non-alcoholic steatohepatitis. Gut 64(4):673–683

    Article  CAS  PubMed  Google Scholar 

  35. Sacks J et al (2018) Effect of Roux-en-Y gastric bypass on liver mitochondrial dynamics in a rat model of obesity. Physiol Rep 6(4):e13600

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jahansouz C et al (2015) Roux-en-Y gastric bypass acutely decreases protein carbonylation and increases expression of mitochondrial biogenesis genes in subcutaneous Adipose tissue. Obes Surg 25(12):2376–2385

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hudish LI, Reusch JE, Sussel L (2019) beta Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 129(10):4001–4008

    Article  PubMed  PubMed Central  Google Scholar 

  38. Christensen AA, Gannon M (2019) The beta cell in type 2 diabetes. Curr Diab Rep 19(9):81

    Article  PubMed  Google Scholar 

  39. Liao Z et al (2019) Polysaccharide from okra (Abelmoschus esculentus (L.) Moench) improves antioxidant capacity via PI3K/AKT pathways and Nrf2 translocation in a type 2 diabetes model. Molecules 24(10):1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang W et al (2021) Metabolomics analysis on obesity-related obstructive sleep apnea after weight loss management: a preliminary study. Front Endocrinol 12:761547

    Article  Google Scholar 

Download references

Funding

This study was funded by the Wisdom Accumulation and Talent Cultivation Project of the Third Xiangya Hospital of Central South University (No. YX202106).

Author information

Authors and Affiliations

Authors

Contributions

Weizheng Li and Pengzhou Li conceptualized and designed the experiments. Pengzhou Li drafted the article. Weizheng Li revised the article critically for important intellectual content. Pengzhou Li, Song Dai, and Xiang Gao contributed to cell and animal experiments. Song Dai and Xiang Gao contributed to the analysis and manuscript preparation. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Weizheng Li.

Ethics declarations

Approval of the research protocol

N/A.

Informed consent

N/A.

Approval date of registry and the registration no. of the study/trial

N/A.

Animal studies

The animal experiments were approved by the Ethics Committee of Central South University (approval no. 2019–S383).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Guf1 was upregulated in pancreatic tissues in T2DM rats with RYGB surgery.

• Guf1 improves palmitic acid-induced dysfunctions of rats’ islet β cells.

• Guf1 improves palmitic acid-induced mitochondrial dysfunction and apoptosis.

• Guf1 promotes the PI3K/Akt and NF-κB signaling but inhibits the AMPK activation.

Supplementary Information

Additional file 1: Fig. S1. 

Determination of Mrps16 and Guf1 expression. (A) Mrps16 and Guf1 expression in pancreatic tissues from T2DM and T2DM+RYGB rats. (B) Mrps16 and Guf1 expression in INS-1 cells treated with or without PA. 

Additional file 2: Fig. S2.

Effects of lentivirus of overexpressing Guf1 or knockdown Guf1 on INS-1 cells viability. INS-1 cells were non-transduced or transduced with lentivirus overexpressing Guf1 (lv-Guf1) or lentivirus knockdown Guf1 (sh1-Guf1 or sh2-Guf1) and then examined for cell viability by MTT assay. 

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Dai, S., Gao, X. et al. Guf1 overexpression improves pancreatic β cell functions in type 2 diabetes mellitus rats with Roux-en-Y gastric bypass (RYGB) surgery. J Physiol Biochem 79, 569–582 (2023). https://doi.org/10.1007/s13105-023-00952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-023-00952-6

Keywords

Navigation