Skip to main content

Advertisement

Log in

Metformin induces mitochondrial remodeling and differentiation of pancreatic progenitor cells into beta-cells by a potential mechanism including suppression of the T1R3, PLCβ2, cytoplasmic Ca+2, and AKT

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The main goal of this study was to investigate the molecular changes in pancreatic progenitor cells subject to high glucose, aspartame, and metformin in vitro. This scope of work glucose, aspartame, and metformin were exposed to pancreatic islet derived progenitor cells (PID-PCs) for 10 days. GLUT1’s role in beta-cell differentiation was examined by using GLUT1 inhibitor WZB117. Insulin+ cell ratio was measured by flow cytometry; the expression of beta-cell differentiation related genes was shown by RT-PCR; mitochondrial mass, mitochondrial ROS level, cytoplasmic Ca2+, glucose uptake, and metabolite analysis were made fluorometrically and spectrophotometrically; and proteins involved in related molecular pathways were determined by western blotting. Findings showed that glucose or aspartame exposed cells had similar metabolic and gene expression profile to control PID-PCs. Furthermore, relatively few insulin+ cells in aspartame treated cells were determined. Aspartame signal is transmitted through PLCβ2, CAMKK2 and LKB1 in PID-PCs. The most obvious finding of this study is that metformin significantly increased beta-cell differentiation. The mechanism involves suppression of the sweet taste signal’s molecules T1R3, PLCβ2, cytoplasmic Ca+2, and AKT in addition to the direct effect of metformin on mitochondria and AMPK, and the energy metabolism of PID-PCs is remodelled in the direction of oxidative phosphorylation. These findings are very important in terms of determining that metformin stimulates the mitochondrial remodeling and the differentiation of PID-PCs to beta-cells and thus it may contribute to the compensation step, which is the first stage of diabetes development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

T2D:

Type 2 diabetes

PID-PCs:

Pancreatic islet-derived progenitor cells

AMPK :

AMP-activated protein kinase

T1R2 :

Taste receptor type 1 member 2

T1R3:

Taste receptor type 1 member 3

PLCβ2:

Phospholipase Cβ2

IP3:

Inositol 1,4,5-triphosphate

cAMP:

Cyclic AMP

GLUT1:

Glucose transporter 1

DCFDA:

2′, 7′-Dichlorofluorine diacetate

FBS:

Fetal bovine serum

PDX-1:

Pancreatic and duodenal homeobox 1

NKX6.1:

NKX homeobox 6.1

PAX4:

Paired box 4

NEUROG3 :

Neurogenin 3

NKX2.2:

NKX homeobox 2.2

INS2:

Insulin 2

GLUT2:

Glucose transporter 2

2-DG:

2-Deoxyglucose

UCP2:

Uncoupling protein 2

MDH2:

Malate dehydrogenase 2

PIP2:

Phosphatidylinositol 4,5-bisphosphate

CAMKK2:

Calcium/calmodulin-dependent protein kinase kinase 2

LKB1:

Liver kinase B1

AKT:

Protein kinase B

NMDA:

N-methyl D-aspartate

ZDF:

Zucker diabetic fatty

References

  1. Agius L, Ford BE, Chachra SS (2020) The Metformin mechanism on gluconeogenesis and AMPK activation: the metabolite perspective. Int J Mol Sci 21:E3240. https://doi.org/10.3390/ijms21093240

    Article  CAS  Google Scholar 

  2. Aigha II, Abdelalim EM (2020) NKX6.1 transcription factor: a crucial regulator of pancreatic β cell development, identity, and proliferation. Stem Cell Res Ther 11:459. https://doi.org/10.1186/s13287-020-01977-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alshawi A, Agius L (2019) Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism. J Biol Chem 294:2839–2853. https://doi.org/10.1074/jbc.RA118.006670

    Article  CAS  PubMed  Google Scholar 

  4. An H, He L (2016) Current understanding of Metformin effect on the control of hyperglycemia in diabetes. J Endocrinol 228:R97–R106. https://doi.org/10.1530/joe-15-0447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andrews ZB, Horvath TL (2009) Uncoupling protein-2 regulates lifespan in mice. Am J Physiol Endocrinol Metab 296:E621–E627. https://doi.org/10.1152/ajpendo.90903.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ban HS, Xu X, Jang K, Kim I, Kim BK, Lee K, Won M (2016) A novel malate dehydrogenase 2 inhibitor suppresses hypoxia-inducible factor-1 by regulating mitochondrial respiration. PLoS ONE 11:e0162568. https://doi.org/10.1371/journal.pone.0162568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banko MR, Allen JJ, Schaffer BE, Wilker EW, Tsou P, White JL, Villén J, Wang B, Kim SR, Sakamoto K, Gygi SP, Cantley LC, Yaffe MB, Shokat KM, Brunet A (2011) Chemical genetic screen for AMPKa2 substrates uncovers a network of proteins involved in mitosis. Mol Cell 44:878–892. https://doi.org/10.1016/j.molcel.2011.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barsby T, Otonkoski T (2022) Maturation of beta cells: lessons from in vivo and in vitro models. Diabetologia 65(6):917–930. https://doi.org/10.1007/s00125-022-05672-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brown RJ, de Banate MA, Rother KI (2010) Artificial sweeteners: a systematic review of metabolic effects in youth. Int J Pediatr Obes 5:305–312. https://doi.org/10.3109/17477160903497027

    Article  PubMed  PubMed Central  Google Scholar 

  10. Buck MD, O’Sullivan D, Geltink RIK, Curtis JD, Chang CH, Sanin DE, Qiu J, Kretz O, Braas D, van der Windt GJW, Chen Q, Huang SCC, O’Neill CM, Edelson BT, Pearce EJ, Sesaki H, Huber TB, Rambold AS, Pearce EL (2016) Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166:63–76. https://doi.org/10.1016/j.cell.2016.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choudhary AK (2018) Aspartame: should individuals with type II diabetes be taking it? Curr Diabetes Rev 14:350–362. https://doi.org/10.2174/1573399813666170601093336

    Article  CAS  PubMed  Google Scholar 

  12. Coskun E, Ercin M, Gezginci-Oktayoglu S (2018) The role of epigenetic regulation and pluripotency-related microRNAs in the differentiation of pancreatic stem cells to beta cells. J Cell Biochem 119:455–467. https://doi.org/10.1002/jcb.26203

    Article  CAS  PubMed  Google Scholar 

  13. Cufi S, Corominas-Faja B, Vazquez-Martin A, Oliveras-Ferraros C, Dorca J, Bosch-Barrera J, Martin-Castillo B, Menendez JA (2012) Metformin-induced preferential killing of breast cancer initiating CD44+ CD24-/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Oncotarget 3:395–398. https://doi.org/10.18632/oncotarget.488

    Article  PubMed  PubMed Central  Google Scholar 

  14. de Matos FF, Ballard CR, Foletto KC, Batista BAM, Neves AM, Ribeiro MFM, Bertoluci MC (2013) Saccharin and aspartame, compared with sucrose, induce greater weight gain in adult Wistar rats, at similar total caloric intake levels. Appetite 60:203–207. https://doi.org/10.1016/j.appet.2012.10.009

    Article  CAS  Google Scholar 

  15. Dong YW, Shi YQ, He LW, Cui XY, Su PZ (2017) Effects of metformin on survival outcomes of pancreatic cancer: a meta-analysis. Oncotarget 8:55478–55488. https://doi.org/10.18632/oncotarget.18233

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ercin M, Gezginci-Oktayoglu S, Bolkent S (2022) Exendin-4 inhibits small intestinal glucose sensing and absorption through repression of T1R2/T1R3 sweet taste receptor signalling in streptozotocin diabetic mice. Transl Res S1931–5244(22):00068–00078. https://doi.org/10.1016/j.trsl.2022.03.012

    Article  CAS  Google Scholar 

  17. Ercin M, Sancar-Bas S, Bolkent S, Gezginci-Oktayoglu S (2018) Tub and β-catenin play a key role in insulin and leptin resistance-induced pancreatic beta-cell differentiation. Biochim Biophys Acta Mol Cell Res 1865:1934–1944. https://doi.org/10.1016/j.bbamcr.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  18. Feng R, Qian C, Liu Q, Jin Y, Liu L, Li S, Liao Y, Zhou H, Liu W, Rayner CK, Ma J (2017) Expression of sweet taste receptor and gut hormone secretion in modelled type 2 diabetes. Gen Comp Endocrinol 252:142–149. https://doi.org/10.1016/j.ygcen.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  19. Fernstrom JD, Munger SD, Sclafani A, de Araujo IE, Roberts A, Molinary S (2012) Mechanisms for sweetness. J Nutr 142:1134S-1141S. https://doi.org/10.3945/jn.111.149567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fogarty S, Ross FA, Ciruelos DV, Gray A, Gowans GJ, Hardie DG (2016) AMPK causes cell cycle arrest in LKB1-deficient cells via activation of CAMKK2. Mol Cancer Res 14:683–695. https://doi.org/10.1158/1541-7786.mcr-15-0479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Folmes CDL, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271. https://doi.org/10.1016/j.cmet.2011.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gardner C, Wylie-Rosett J, Gidding SS, Steffen LM, Johnson RK, Reader D, Lichtenstein AH (2012) Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 35:1798–1808. https://doi.org/10.2337/dc12-9002

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gascón S, Murenu E, Masserdotti G, Ortega F, Russo GL, Petrik D, Deshpande A, Heinrich C, Karow M, Robertson SP, Schroeder T, Beckers J, Irmler M, Berndt C, Angeli JPF, Conrad M, Berninger B, Götz M (2016) Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18:396–409. https://doi.org/10.1016/j.stem.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  24. Gezginci-Oktayoglu S, Onay-Ucar E, Sancar-Bas S, Karatug-Kacar A, Arda ESN, Bolkent S (2018) Involvement of dying beta-cell originated messenger molecules in the differentiation of pancreatic mesenchymal stem cells under glucotoxic and glucolipotoxic conditions. J Cell Physiol 233:4235–4244. https://doi.org/10.1002/jcp.26242

    Article  CAS  PubMed  Google Scholar 

  25. Glancy B, Willis WT, Chess DJ, Balaban RS (2013) Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry 52:2793–2809. https://doi.org/10.1021/bi3015983

    Article  CAS  PubMed  Google Scholar 

  26. Gregg B, Elghazi L, Alejandro EU, Smith MR, Blandino-Rosano M, El-Gabri D, Cras-Méneur C, Bernal-Mizrachi E (2014) Exposure of mouse embryonic pancreas to metformin enhances the number of pancreatic progenitors. Diabetologia 57:2566–2575. https://doi.org/10.1007/s00125-014-3379-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hurley RL, Barré LK, Wood SD, Anderson KA, Kemp BE, Means AR, Witters LA (2006) Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J Biol Chem 281:36662–36672. https://doi.org/10.1074/jbc.m606676200

    Article  CAS  PubMed  Google Scholar 

  28. Iacobazzi V, Infantino V (2014) Citrate-new functions for an old metabolite. Biol Chem 395:387–399. https://doi.org/10.1515/hsz-2013-0271

    Article  CAS  PubMed  Google Scholar 

  29. Jackson RM, Griesel BA, Gurley JM, Szweda LI, Olson AL (2017) Glucose availability controls adipogenesis in mouse 3T3-L1 adipocytes via up-regulation of nicotinamide metabolism. J Biol Chem 45:18556–18564. https://doi.org/10.1074/jbc.M117.791970

    Article  Google Scholar 

  30. Ježek J, Cooper KF, Strich R (2018) Reactive oxygen species and mitochondrial dynamics: the Yin and Yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel) 7(1):13. https://doi.org/10.3390/antiox7010013

    Article  CAS  PubMed  Google Scholar 

  31. Kojima I, Nakagawa Y, Ohtsu Y, Medina A, Nagasawa M (2014) Sweet taste-sensing receptors expressed in pancreatic β-cells: sweet molecules act as biased agonists. Endocrinol Metab (Seoul) 29:12–19. https://doi.org/10.3803/EnM.2014.29.1.12

    Article  PubMed  Google Scholar 

  32. Lamontagne J, Al-Mass A, Nolan CJ, Corkey BE, Murthy Madiraju SR, Joly E, Prentki M (2017) Identification of the signals for glucose-induced insulin secretion in INS1 (832/13) β-cells using metformin-induced metabolic deceleration as a model. J Biol Chem 292:19458–19468. https://doi.org/10.1074/jbc.M117.808105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Loubiere C, Clavel S, Gilleron J, Harisseh R, Fauconnier J, Ben-Sahra I, Kaminski L, Laurent K, Herkenne S, Lacas-Gervais S, Ambrosetti D, Alcor D, Rocchi S, Cormont M, Michiels JF, Mari B, Mazure NM, Scorrano L, Lacampagne A, Gharib A, Tanti JF, Bost F (2017) The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells. Sci Rep 7:5040. https://doi.org/10.1038/s41598-017-05052-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moin ASM, Butler AE (2019) Alterations in beta cell identity in type 1 and type 2 diabetes. Curr Diab Rep 19:83. https://doi.org/10.1007/s11892-019-1194-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakada D, Saunders TL, Morrison SJ (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468:653–658. https://doi.org/10.1038/nature09571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H, Nikolaev VO, Lohse JM, Shigemura N, Ninomiya Y, Kojima I (2009) Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE 4:e5106. https://doi.org/10.1371/journal.pone.0005106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Papa L, Djedaini M, Hoffman R (2019) Mitochondrial role in stemness and differentiation of hematopoietic stem cells. Stem Cells Int 2019:4067162. https://doi.org/10.1155/2019/4067162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pecqueur C, Bui T, Gelly C, Hauchard J, Barbot C, Bouillaud F, Ricquier D, Miroux B, Thompson CB (2008) Uncoupling protein-2 controls proliferation by promoting fatty acid oxidation and limiting glycolysis-derived pyruvate utilization. FASEB J 22:9–18

    Article  CAS  PubMed  Google Scholar 

  39. Rafalski VA, Mancini E, Brunet A (2012) Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J Cell Sci 25:5597–5608. https://doi.org/10.1242/jcs.114827

    Article  CAS  Google Scholar 

  40. Resende RR, Adhikari A, da Costa JL, Lorençon E, Ladeira MS, Guatimosim S, Kihara AH, Ladeira LO (2010) Influence of spontaneous calcium events on cell-cycle progression in embryonal carcinoma and adult stem cells. Biochim Biophys Acta Mol Cell Res 2010:246–260. https://doi.org/10.1016/j.bbamcr.2009.11.008

    Article  CAS  Google Scholar 

  41. Sawadsopanon T, Meksawan K, Chanvorachote P (2017) Aspartame inhibits migration of human intestinal epithelial cells. J Food Biochem 41:e12341. https://doi.org/10.1111/jfbc.12341

    Article  CAS  Google Scholar 

  42. Sciannimanico S, Grimaldi F, Vescini F, De Pergola G, Iacoviello M, Licchelli B, Guastamacchia E, Giagulli VA, Triggiani V (2020) Metformin: up to date. Endocr Metab Immune Disord Drug Targets 20:172–181. https://doi.org/10.2174/1871530319666190507125847

    Article  CAS  PubMed  Google Scholar 

  43. Simon BR, Parlee SD, Learman BS, Mori H, Scheller EL, Cawthorn WP, Ning X, Gallagher K, Tyrberg B, Assadi-Porter FM, Evans CR, MacDougald OA (2013) Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors. J Biol Chem 288:32475–32489. https://doi.org/10.1074/jbc.M113.514034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun S, Liu Y, Lipsky S, Cho M (2007) Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J 21:1472–1480. https://doi.org/10.1096/fj.06-7153com

    Article  CAS  PubMed  Google Scholar 

  45. Suwa M, Egashira T, Nakano H, Sasaki H, Kumagai S (2006) Metformin increases the PGC-1α protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 101:1685–1692. https://doi.org/10.1152/japplphysiol.00255.2006

    Article  CAS  PubMed  Google Scholar 

  46. Tajima K, Shirakawa J, Okuyama T, Kyohara M, Yamazaki S, Togashi Y, Terauchi Y (2017) Effects of metformin on compensatory pancreatic β-cell hyperplasia in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 313:E367–E380. https://doi.org/10.1152/ajpendo.00447.2016

    Article  PubMed  Google Scholar 

  47. Wanet A, Arnould T, Najimi M, Renard P (2015) Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev 24:1957–1971. https://doi.org/10.1089/scd.2015.0117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weir GC, Bonner-Weir S (2004) Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53:S16–S210. https://doi.org/10.2337/diabetes.53.suppl_3.s16

    Article  CAS  PubMed  Google Scholar 

  49. Weir GC, Bonner-Weir S (2007) A dominant role for glucose in β cell compensation of insulin resistance. J Clin Invest 117:81–83. https://doi.org/10.1172/JCI30862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wiegand G, Remington SJ (1986) Citrate synthase: structure, control, and mechanism. Annu Rev Biophys Biophys Chem 15:97–117. https://doi.org/10.1146/annurev.bb.15.060186.000525

    Article  CAS  PubMed  Google Scholar 

  51. Wyett G, Gibert Y, Ellis M, Castillo HA, Kaslin J, Aston-Mourney K (2018) Metformin, beta-cell development, and novel processes following beta-cell ablation in zebrafish. Endocrine 59:419–425. https://doi.org/10.1007/s12020-017-1502-3

    Article  CAS  PubMed  Google Scholar 

  52. Yan Q, Lu Y, Zhou L, Chen J, Xu H, Cai M, Shi Y, Jiang J, Xiong W, Gao J, Wang H (2018) Mechanistic insights into GLUT1 activation and clustering revealed by super-resolution imaging. Proc Natl Acad Sci U S A 115(27):7033–7038. https://doi.org/10.1073/pnas.1803859115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zakikhani M, Blouin MJ, Piura E, Pollak MN (2010) Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 123:271–279. https://doi.org/10.1007/s10549-010-0763-9

    Article  CAS  PubMed  Google Scholar 

  54. Zhang B, Davidson MM, Zhou H, Wang C, Walker WF, Hei TK (2013) Cytoplasmic irradiation results in mitochondrial dysfunction and DRP1-dependent mitochondrial fission. Cancer Res 73(22):6700–6710. https://doi.org/10.1158/0008-5472.CAN-13-1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is supported by The Scientific and Technological Research Council of Turkey (116Z560) and Istanbul University Scientific Research Foundation (26194 and 52123).

Author information

Authors and Affiliations

Authors

Contributions

Ertan Celik: executed cell culture applications, RT-PCR, immunocytochemistry, glucose uptake, cAMP assay, Ca2+ measurement, metabolite measurement, mitochondrial mass and mitochondrial protein measurement, mitochondrial ROS and insulin secretion assays; contributed to flow cytometric labelings, cell lysate preparation, western blotting and edited manuscript. Merve Ercin: executed flow cytometric labelings and analysis, cell culturing; contributed to metabolite measurement, cell lysate preparation, western blotting and edited manuscript. Sehnaz Bolkent: contributed to provide project and edited the manuscript. Selda Gezginci-Oktayoglu: created project idea, written project and carried it as a responsible researcher; set up the experiments; assessed results and written manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Selda Gezginci-Oktayoglu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Glucose does not alter the metabolic profile of pancreatic progenitors.

• Aspartame and metformin stimulate the beta-cell differentiation.

• Aspartame signal is transmitted via PLCβ2, CAMKK2, and LKB1 in pancreatic progenitors.

• Metformin suppresses T1R3, PLCβ2, Cytoplasmic Ca+2, and AKT.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Supplementary file2 (DOCX 15 KB)

Supplementary file3 (DOCX 13 KB)

Supplementary file4

Suppl. Fig. 1. Glucose uptake rates (μmol/mg protein/20 min) in control (FM), aspartame (A), metformin (M) and aspartame/metformin combination (A+M) absence (white columns) or presence (black columns) GLUT1 inhibitor WZB117. ap<0.05 vs FM and , mp<0.05 vs A+M. (PNG 29 kb)

High resolution image (TIF 16403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celik, E., Ercin, M., Bolkent, S. et al. Metformin induces mitochondrial remodeling and differentiation of pancreatic progenitor cells into beta-cells by a potential mechanism including suppression of the T1R3, PLCβ2, cytoplasmic Ca+2, and AKT. J Physiol Biochem 78, 869–883 (2022). https://doi.org/10.1007/s13105-022-00910-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-022-00910-8

Keywords

Navigation