Skip to main content

Advertisement

Log in

Pontine A5 region modulation of the cardiorespiratory response evoked from the midbrain dorsolateral periaqueductal grey

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Connections between the midbrain dorsolateral periaqueductal grey (dlPAG) and the pontine A5 region have been shown. The stimulation of both regions evokes similar cardiovascular responses: tachycardia and hypertension. Accordingly, we have studied the interactions between dlPAG and A5 region in spontaneously breathing anesthetized rats. dlPAG was electrically stimulated (20–30 μA 1-ms pulses were given for 5 s at 100 Hz). Changes in the evoked cardiorespiratoy response were analysed before and after ipsilateral microinjections of muscimol (GABAergic agonist, 50 nl, 0.25 nmol, 5 s) within the A5 region. Electrical stimulation of the dlPAG produces, in the rat, a response characterized by tachypnoea (p < 0.001), hypertension (p < 0.001) and tachycardia (p < 0.001). The increase in respiratory rate was due to a decrease in expiratory time (p < 0.01). Pharmacological inhibition of the A5 region with muscimol produced a marked reduction of the tachycardia (p < 0.001) and the tachypnoea (p < 0.01) evoked from the dlPAG. Finally, to assess functional interactions between A5 and dlPAG, extracellular activity of putative A5 neurones were recorded during dlPAG electrical stimulation. Forty A5 cells were recorded, 16 of which were affected by dlPAG stimulation (40%). 4 cells showed activation, 5 cells excitation and 7 cells decreased spontaneous activity to dlPAG stimulation (p < 0.001). These results confirm a link between the A5 region and dlPAG. The potential role of these connections in the modulation of dlPAG evoked cardiorespiratory responses and their possible clinical implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bajic D, Proudfit HK (2013) Projections from the rat cuneiform nucleus to the A7, A6 (locus coeruleus), and A5 pontine noradrenergic cell groups. J Chem Neuroanat 50-51:11–20. https://doi.org/10.1016/j.jchemneu.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  2. Bandler R, Keay KA, Floyd N, Price J (2000) Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull. 53(1):95–104. https://doi.org/10.1016/S0361-9230(00)00313-0

    Article  CAS  PubMed  Google Scholar 

  3. Benarroch EE, Schmeichel AM, Low PA, Parisi JE (2010) Differential involvement of the periaqueductal gray in multiple system atrophy. Auton Neurosci 158:111–117. https://doi.org/10.1016/j.autneu.2010.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benarroch EE, Schmeichel AM, Low PA, Sandroni P, Parisi JE (2008) Loss of A5 noradrenergic neurons in multiple system atrophy. Acta Neuropathol 115(6):629–634. https://doi.org/10.1007/s00401-008-0351-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bruinstroop E, Cano G, Vanderhorst VG, Cavalcante JC, Wirth J, Sena-Esteves M, Saper CB (2012) Spinal projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell groups in rats. J Comp Neurol 520:1985–2001. https://doi.org/10.1002/cne.23024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carrive P (1993) The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behav Brain Res 58:27–47. https://doi.org/10.1016/0166-4328(93)90088-8

    Article  CAS  PubMed  Google Scholar 

  7. Comet MA, Sevoz-Couche C, Hanoun N, Hamon M, Laguzzi R (2004) 5-HT-mediated in-hibition of cardiovagal baroreceptor reflex response during defense reaction in the rat. Am J Physiol Heart Circ Physiol 287(4):H1641e9

    Article  Google Scholar 

  8. Da Silva LG, de Menezes RCA, Santos RAS, Campagnole-Santos MJ, Fontes MAP (2003) Role of periaqueductal gray on the cardiovascular response evoked by disinhibition of the dorsomedial hypothalamus. Brain Res 984:206–214. https://doi.org/10.1016/S0006-8993(03)03157-3

    Article  CAS  PubMed  Google Scholar 

  9. Dampney RAL (2015) Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am J Physiol Regul Integr Comp Physiol 309:R429–R443. https://doi.org/10.1152/ajpregu.00051

    Article  CAS  PubMed  Google Scholar 

  10. Dampney RAL, Furlong TM, Horiuchi J, Iigaya K (2013) Role of dorsolateral periaqueductal grey in the coordinated regulation of cardiovascular and respiratory function. Auton Neurosci 175(1–2):17–25. https://doi.org/10.1016/j.autneu.2012.12.008

    Article  PubMed  Google Scholar 

  11. Dawid Milner MS, Lara JP, Lopez de Miguel MP, Lopez-Gonzalez MV, Spyer KM, Gonzalez-Baron S (2003) A5 region modulation of the cardiorespiratory responses evoked from parabrachial cell bodies in the anaesthetised rat. Brain Res 982:108–118. https://doi.org/10.1016/S0006-8993(03)03005-1

    Article  CAS  PubMed  Google Scholar 

  12. Dawid-Milner MS, Lara JP, Gonzalez-Baron S, Spyer KM (2001) Respiratory effects of stimulation of cell bodies of the A5 region in the anaesthetised rat. Pflugers Arch 441:434–443. https://doi.org/10.1007/s004240000450

    Article  CAS  PubMed  Google Scholar 

  13. Diaz-Casares A, Lopez-Gonzalez MV, Peinado-Aragones CA, Gonzalez-Baron S, Dawid-Milner MS (2012) Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area. Auton Neurosci 169:124–134. https://doi.org/10.1016/j.autneu.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  14. Díaz-Casares A, López-González MV, Peinado-Aragonés CA, Lara JP, González-Barón S, Dawid-Milner MS (2009) Role of the parabrachial complex in the cardiorespiratory response evoked from hypothalamic defense area stimulation in the anesthetized rat. Brain Res 1279:58–70. https://doi.org/10.1016/j.brainres.2009.02.085

    Article  CAS  PubMed  Google Scholar 

  15. Goodchild AK, Phillips JK, Lipski J, Pilowsky PM (2001) Differential expression of catecholamine synthetic enzymes in the caudal ventral pons. J Comp Neurol 438(4):457–467. https://doi.org/10.1002/cne.1328

    Article  CAS  PubMed  Google Scholar 

  16. Guyenet PG, Stornetta RL, Bayliss DA (2010) Central respiratory chemoreception. J Comp Neurol 518(19):3883–3906. https://doi.org/10.1002/cne.22435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    Article  CAS  Google Scholar 

  18. Guyenet PG, Koshiya N, Huangfu D, Verberne AJ, Riley TA (1993) Central respiratory control of A5 and A6 pontine noradrenergic neurons. Am J Phys 264:1035–1044

    Google Scholar 

  19. Hayward LF, Castellanos M, Davenport PW (2004) Parabrachial neurons mediate dorsal periaqueductal gray evoked respiratory responses in the rat. J Appl Physiol 96(3):1146–1154. https://doi.org/10.1152/japplphysiol.00903

    Article  PubMed  Google Scholar 

  20. Hayward LF, Von Reitzenstein M (2002) c-Fos expression in the midbrain periaqueductal gray after chemoreceptor and baroreceptor activation. Am J Physiol Heart Circ Physiol 283:1975–1984. https://doi.org/10.1152/ajpheart.00300

    Article  Google Scholar 

  21. Hilaire G (2006) Endogenous noradrenaline affects the maturation and function of the respiratory network: possible implication for SIDS. Auton Neurosci 126-127:320–331. https://doi.org/10.1016/j.autneu.2006.01.021

    Article  CAS  PubMed  Google Scholar 

  22. Horiuchi J, McDowall LM, Dampney RAL (2009) Vasomotor and respiratory responses evoked from the dorsolateral periaqueductal grey are mediated by the dorsomedial hypothalamus. J Physiol 587:5149–5162. https://doi.org/10.1113/jphysiol.2009.179739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horiuchi J, McDowall LM, Dampney RA (2006) Differential control of cardiac and sympathetic vasomotor activity from the dorsomedial hypothalamus. Clin Exp Pharmacol Physiol 33(12):1265–1268

    Article  CAS  Google Scholar 

  24. Huangfu DH, Koshiya N, Guyenet PG (1991) A5 noradrenergic unit activity and sympathetic nerve discharge in rats. Am J Phys 261:393–402. https://doi.org/10.1152/ajpregu.1991.261.2.R393

    Article  Google Scholar 

  25. Jodkowski JS, Coles SK, Dick TE (1994) A ‘pneumotaxic centre’ in rats. Neurosci Lett 172:67–72. https://doi.org/10.1016/0304-3940(94)90664-5

    Article  CAS  PubMed  Google Scholar 

  26. Kanbar R, Depuy SD, West GH, Stornetta RL, Guyenet PG (2011) Regulation of visceral sympathetic tone by A5 noradrenergic neurons in rodents. J Physiol 589:903–917. https://doi.org/10.1113/jphysiol.2010.198374

    Article  CAS  PubMed  Google Scholar 

  27. Keay KA, Bandler R (2001) Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev 25:669–678. https://doi.org/10.1016/S0149-7634(01)00049-5

    Article  CAS  PubMed  Google Scholar 

  28. Koshiya N, Guyenet PG (1994) A5 noradrenergic neurons and the carotid sympathetic chemoreflex. Am J Phys 267:519–526. https://doi.org/10.1152/ajpregu.1994.267.2.R519

    Article  Google Scholar 

  29. Krout KE, Jansen AS, Loewy AD (1998) Periaqueductal gray matter projection to the parabrachial nucleus in rat. J Comp Neurol 401:437–454. https://doi.org/10.1002/(SICI)1096-9861(19981130)401:4<437::AID-CNE2>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  30. Lara JP, Dawid-Milner MS, López MV, Montes C, Spyer KM, González-Barón (2002) Laryngeal effects of stimulation of rostral and ventral pons in the anaesthetized rat. Brain Research 934:97–106. https://doi.org/10.1016/s0006-8993(02)02364-8

    Article  CAS  PubMed  Google Scholar 

  31. Loewy AD (1991) Forebrain nuclei involved in autonomic control. Prog Brain Res 87:253–268. https://doi.org/10.1016/S0079-6123(08)63055-1

    Article  CAS  PubMed  Google Scholar 

  32. López-González MV, Díaz-Casares A, González-García M, Peinado-Aragonés CA, Barbancho MA, Carrillo de Albornoz M, Dawid-Milner MS (2018) Glutamate receptors of the A5 region modulate cardiovascular responses evoked from the dorsomedial hypothalamic nucleus and perifornical area. J Physiol Biochem 74:325–334. https://doi.org/10.1007/s13105-018-0612-6

    Article  PubMed  Google Scholar 

  33. López-González MV, Díaz-Casares A, Peinado-Aragonés CA, Lara JP, Barbancho MA, Dawid-Milner MS (2013) Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats. Exp Physiol 98(8):1279–1294. https://doi.org/10.1113/expphysiol.2013.072538

    Article  PubMed  Google Scholar 

  34. Netzer F, Bernard JF, Verberne AJ, Hamon M, Camus F, Benoliel JJ, Sévoz-Couche C (2011) Brain circuits mediating baroreflex bradycardia inhibition in rats: an anatomical and functional link between the cuneiform nucleus and the periaqueductal grey. J Physiol 589(8):2079–2091. https://doi.org/10.1113/jphysiol.2010.203737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosin DL, Chang DA, Guyenet PG (2006) Afferent and efferent connections of the rat retrotrapezoid nucleus. J Comp Neurol 499:64–89. https://doi.org/10.1002/cne.21105

    Article  PubMed  Google Scholar 

  36. Schlenker EH, Prestbo A (2003) Elimination of the post-hypoxic frequency decline in conscious rats lesioned in pontine A5 region. Respir Physiol Neurobiol 138:179–191

    Article  Google Scholar 

  37. Sévoz-Couche C (2019) 5-HT3 receptor mediated neural transmission of cardiorespiratory modulation by the nucleus of the tractus solitarius. In: Pilowsky PM (ed) Serotonin. Elsevier, Amsterdam, pp 349–367. https://doi.org/10.1016/B978-0-12-800050-2.00017-6

    Chapter  Google Scholar 

  38. Silva-Carvalho L, Dawid-Milner MS, Spyer KM (1995) The pattern of excitatory inputs to the nucleus tractus solitarii evoked on stimulation in the hypothalamic defence area in the cat. J Physiol 487(3):727–737. https://doi.org/10.1113/jphysiol.1995.sp020915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tavares I, Lima D (2002) The caudal ventrolateral medulla as an important inhibitory modulator of pain transmission in the spinal cord. J Pain 3(5):337–346. https://doi.org/10.1054/jpai.2002.127775

    Article  PubMed  Google Scholar 

  40. Tavares I, Lima D, Coimbra A (1996) The ventrolateral medulla of the rat is connected with the spinal cord dorsal horn by an indirect descending pathway relayed in the A5 noradrenergic cell group. J Comp Neurol 374:84–95. https://doi.org/10.1002/(SICI)1096-9861(19961007)374:1<84::AID-CNE6>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  41. Taxini CL, Moreira TS, Takakura AC, Bícego KC, Gargaglioni LH, Zoccal DB (2017) Role of A5 noradrenergic neurons in the chemoreflex control of respiratory and sympathetic activities in unanesthetized conditions. Neuroscience 354:146–157. https://doi.org/10.1016/j.neuroscience.2017.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taxini CL, Takakura AC, Gargaglioni LH, Moreira TS (2011) Control of the central chemoreflex by A5 noradrenergic neurons in rats. Neuroscience 199:177–186. https://doi.org/10.1016/j.neuroscience.2011.09.068

    Article  CAS  PubMed  Google Scholar 

  43. Vianna DM, Brandão ML (2003) Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz J Med Biol Res 36(5):557–566. https://doi.org/10.1590/S0100-879X2003000500002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by a program grant Junta de Andalucía, Group no. CTS-156, Spain. Part of the final study was supported with a grant, PPit 2017/14, from the Own Funds Program of the University of Málaga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Víctor López-González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experimental protocols were performed in accordance with the recommendations of the European Union directive (2010/63/EU) for animal care and experimental procedures. The experiments were approved by the Ethical Committee for Animal Research of the University of Malaga and the Junta de Andalucía. Every attempt was made to reduce animal suffering, discomfort and the number of animals needed to obtain reliable results.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

- A5 region inhibition reduces dlPAG evoked tachycardic and tachypnoeic responses.

- Some A5 cells recorded were affected by dlPAG stimulation.

- A5 region and dlPAG are shown to be functionally related.

Díaz-Casares and Dawid-Milner both had equally responsibility and must be considered last authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-González, M.V., González-García, M., Peinado-Aragonés, C.A. et al. Pontine A5 region modulation of the cardiorespiratory response evoked from the midbrain dorsolateral periaqueductal grey. J Physiol Biochem 76, 561–572 (2020). https://doi.org/10.1007/s13105-020-00761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00761-1

Keywords

Navigation