Skip to main content

Advertisement

Log in

The emerging roles of lactate as a redox substrate and signaling molecule in adipose tissues

  • Review Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Thermogenic (brown and beige) adipose tissues improve glucose and lipid homeostasis and therefore represent putative targets to cure obesity and related metabolic diseases including type II diabetes. Beside decades of research and the very well-described role of noradrenergic signaling, mechanisms underlying adipocytes plasticity and activation of thermogenic adipose tissues remain incompletely understood. Recent studies show that metabolites such as lactate control the oxidative capacity of thermogenic adipose tissues. Long time viewed as a metabolic waste product, lactate is now considered as an important metabolic substrate largely feeding the oxidative metabolism of many tissues, acting as a signaling molecule and as an inter-cellular and inter-tissular redox carrier. In this review, we provide an overview of the recent findings highlighting the importance of lactate in adipose tissues, from its production to its role as a browning inducer and its metabolic links with brown adipose tissue. We also discuss additional function(s) than thermogenesis ensured by brown and beige adipose tissues, i.e., their ability to dissipate high redox pressure and oxidative stress thanks to the activity of the uncoupling protein-1, helping to maintain tissue and whole organism redox homeostasis and integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmed K, Tunaru S, Tang C, Muller M, Gille A, Sassmann A, Hanson J, Offermanns S (2010) An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab 11:311–319

    Article  CAS  PubMed  Google Scholar 

  2. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, Handschin C, Bosch F, Hall MN (2016) mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med 8:232–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aldiss P, Betts J, Sale C, Pope M, Symonds ME (2017) Exercise-induced ‘browning’ of adipose tissues. Metabolism

  4. Bai Y, Shang Q, Zhao H, Pan Z, Guo C, Zhang L, Wang Q (2016) Pdcd4 restrains the self-renewal and white-to-beige transdifferentiation of adipose-derived stem cells. Cell Death Dis 7:e2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartelt, A. and Heeren, J. (2013) Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10:24–36

  6. Betz MJ, Enerback S (2018) Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat Rev Endocrinol 14:77–87

    Article  CAS  PubMed  Google Scholar 

  7. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, Kastenberger M, Bogdan C, Schleicher U, Mackensen A, Ullrich E, Fichtner-Feigl S, Kesselring R, Mack M, Ritter U, Schmid M, Blank C, Dettmer K, Oefner PJ, Hoffmann P, Walenta S, Geissler EK, Pouyssegur J, Villunger A, Steven A, Seliger B, Schreml S, Haferkamp S, Kohl E, Karrer S, Berneburg M, Herr W, Mueller-Klieser W, Renner K, Kreutz M (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24:657–671

    Article  CAS  PubMed  Google Scholar 

  9. Brooks GA (2000) Intra- and extra-cellular lactate shuttles. Med Sci Sports Exerc 32:790–799

    Article  CAS  PubMed  Google Scholar 

  10. Brooks GA (2018) The science and translation of lactate shuttle theory. Cell Metab 27:757–785

    Article  CAS  PubMed  Google Scholar 

  11. Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE (1999) Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci U S A 96:1129–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  PubMed  Google Scholar 

  13. Carriere A, Jeanson Y, Berger-Muller S, Andre M, Chenouard V, Arnaud E, Barreau C, Walther R, Galinier A, Wdziekonski B, Villageois P, Louche K, Collas P, Moro C, Dani C, Villarroya F, Casteilla L (2014) Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes. 63:3253–3265

    Article  CAS  PubMed  Google Scholar 

  14. Chechi K, Voisine P, Mathieu P, Laplante M, Bonnet S, Picard F, Joubert P, Richard D (2017) Functional characterization of the Ucp1-associated oxidative phenotype of human epicardial adipose tissue. Sci Rep 7:15566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen YJ, Mahieu NG, Huang X, Singh M, Crawford PA, Johnson SL, Gross RW, Schaefer J, Patti GJ (2016) Lactate metabolism is associated with mammalian mitochondria. Nat Chem Biol 12:937–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chouchani ET, Kazak L, Jedrychowski MP, Lu GZ, Erickson BK, Szpyt J, Pierce KA, Laznik-Bogoslavski D, Vetrivelan R, Clish CB, Robinson AJ, Gygi SP, Spiegelman BM (2016) Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature. 532:112–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chouchani ET, Kazak L, Spiegelman BM (2017) Mitochondrial reactive oxygen species and adipose tissue thermogenesis: bridging physiology and mechanisms. J Biol Chem 292:16810–16816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cori CF (1981) The glucose-lactic acid cycle and gluconeogenesis. Curr Top Cell Regul 18:377–387

    Article  CAS  PubMed  Google Scholar 

  20. Cori CF, Cori GT (1929) Glycogen formation in the liver from d- and l-lactic acid. J Biol Chem 81:389–403

    CAS  Google Scholar 

  21. Crisan M, Casteilla L, Lehr L, Carmona M, Paoloni-Giacobino A, Yap S, Sun B, Leger B, Logar A, Penicaud L, Schrauwen P, Cameron-Smith D, Russell AP, Peault B, Giacobino JP (2008) A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells 26:2425–2433

    Article  CAS  PubMed  Google Scholar 

  22. Cuevas-Ramos D, Mehta R, Aguilar-Salinas CA (2019) Fibroblast growth factor 21 and browning of white adipose tissue. Front Physiol 10:37

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Matteis R, Lucertini F, Guescini M, Polidori E, Zeppa S, Stocchi V, Cinti S, Cuppini R (2013) Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovasc Dis 23:582–590

    Article  PubMed  CAS  Google Scholar 

  25. DiGirolamo M, Newby FD, Lovejoy J (1992) Lactate production in adipose tissue: a regulated function with extra-adipose implications. FASEB J 6:2405–2412

    Article  CAS  PubMed  Google Scholar 

  26. Faintrenie G, Geloen A (1997) Effect of aging on norepinephrine and phenylephrine stimulated lactate production by white adipocytes. Obes Res 5:100–104

    Article  CAS  PubMed  Google Scholar 

  27. Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, Li H, Huet G, Yuan Q, Wigal T, Butt Y, Ni M, Torrealba J, Oliver D, Lenkinski RE, Malloy CR, Wachsmann JW, Young JD, Kernstine K, DeBerardinis RJ (2017) Lactate metabolism in human lung tumors. Cell. 171(358–371):e359

    Google Scholar 

  28. Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gorski T, Mathes S, Krutzfeldt J (2018) Uncoupling protein 1 expression in adipocytes derived from skeletal muscle fibro/adipogenic progenitors is under genetic and hormonal control. J Cachexia Sarcopenia Muscle 9:384–399

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hagstrom E, Arner P, Ungerstedt U, Bolinder J (1990) Subcutaneous adipose tissue: a source of lactate production after glucose ingestion in humans. Am J Phys 258:E888–E893

    CAS  Google Scholar 

  32. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hanatani S, Motoshima H, Takaki Y, Kawasaki S, Igata M, Matsumura T, Kondo T, Senokuchi T, Ishii N, Kawashima J, Kukidome D, Shimoda S, Nishikawa T, Araki E (2016) Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice. J Clin Biochem Nutr 59:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hankir, M.K. and Klingenspor, M. (2018) Brown adipocyte glucose metabolism: a heated subject EMBO Rep 19:e46404

  35. Hao Q, Yadav R, Basse AL, Petersen S, Sonne SB, Rasmussen S, Zhu Q, Lu Z, Wang J, Audouze K, Gupta R, Madsen L, Kristiansen K, Hansen JB (2015) Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism. Am J Physiol Endocrinol Metab 308:E380–E392

    Article  CAS  PubMed  Google Scholar 

  36. Harada N, Hirano I, Inui H, Yamaji R (2018) Stereoselective effects of lactate enantiomers on the enhancement of 3T3-L1 adipocyte differentiation. Biochem Biophys Res Commun 498:105–110

    Article  CAS  PubMed  Google Scholar 

  37. Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 290:E1237–E1244

    Article  CAS  PubMed  Google Scholar 

  38. Held NM, Kuipers EN, van Weeghel M, van Klinken JB, Denis SW, Lombes M, Wanders RJ, Vaz FM, Rensen PCN, Verhoeven AJ, Boon MR, Houtkooper RH (2018) Pyruvate dehydrogenase complex plays a central role in brown adipocyte energy expenditure and fuel utilization during short-term beta-adrenergic activation. Sci Rep 8:9562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hui S, Rabinowitz JD (2018) An unexpected trigger for calorie burning in brown fat. Nature. 560:38–39

    Article  CAS  PubMed  Google Scholar 

  40. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Z, Yanxiang Guo J, White E, Rabinowitz JD (2017) Glucose feeds the TCA cycle via circulating lactate. Nature. 551:115–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Iwanaga T, Kuchiiwa T, Saito M (2009) Histochemical demonstration of monocarboxylate transporters in mouse brown adipose tissue. Biomed Res 30:217–225

    Article  CAS  PubMed  Google Scholar 

  42. Jansson PA, Larsson A, Smith U, Lonnroth P (1994) Lactate release from the subcutaneous tissue in lean and obese men. J Clin Invest 93:240–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jastroch M (2017) Uncoupling protein 1 controls reactive oxygen species in brown adipose tissue. Proc Natl Acad Sci U S A 114:7744–7746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jeanson Y, Carriere A, Casteilla L (2015) A new role for browning as a redox and stress adaptive mechanism? Front Endocrinol (Lausanne) 6:158

    Article  Google Scholar 

  45. Jeanson Y, Ribas F, Galinier A, Arnaud E, Ducos M, Andre M, Chenouard V, Villarroya F, Casteilla L, Carriere A (2016) Lactate induces FGF21 expression in adipocytes through a p38-MAPK pathway. Biochem J 473:685–692

    Article  CAS  PubMed  Google Scholar 

  46. Jeong JH, Chang JS, Jo YH (2018) Intracellular glycolysis in brown adipose tissue is essential for optogenetically induced nonshivering thermogenesis in mice. Sci Rep 8:6672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kajimura S, Spiegelman BM, Seale P (2015) Brown and beige fat: physiological roles beyond heat generation. Cell Metab 22:546–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim N, Nam M, Kang MS, Lee JO, Lee YW, Hwang GS, Kim HS (2017) Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells. Sci Rep 7:41066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, Spiegelman BM (2014) Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513:100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Klepac K, Georgiadi A, Tschop M, Herzig S (2019) The role of brown and beige adipose tissue in glycaemic control. Mol Asp Med 68:90–100

    Article  CAS  Google Scholar 

  51. Klingenspor M, Fromme T, Hughes DA Jr, Manzke L, Polymeropoulos E, Riemann T, Trzcionka M, Hirschberg V, Jastroch M (2008) An ancient look at UCP1. Biochim Biophys Acta 1777:637–641

    Article  CAS  PubMed  Google Scholar 

  52. Krycer JR, Quek LE, Francis D, Fazakerley DJ, Elkington SD, Diaz-Vegas A, Cooke KC, Weiss FC, Duan X, Kurdyukov S, Zhou PX, Tambar UK, Hirayama A, Ikeda S, Kamei Y, Soga T, Cooney GJ, James DE (2019) Lactate production is a prioritised feature of adipocyte metabolism. J Biol Chem

  53. Leveillard T, Philp NJ, Sennlaub F (2019) Is retinal metabolic dysfunction at the center of the pathogenesis of age-related macular degeneration? Int J Mol Sci 20:E762

  54. Leverve XM, Mustafa I (2002) Lactate: a key metabolite in the intercellular metabolic interplay. Crit Care 6:284–285

    Article  PubMed  PubMed Central  Google Scholar 

  55. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 365:871–875

    Article  CAS  PubMed  Google Scholar 

  56. Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, Krausz KW, Xiang R, Gavrilova O, Patterson AD, Gonzalez FJ (2017) Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab 26:672–685

  57. Longchamp A, Tao M, Bartelt A, Ding K, Lynch L, Hine C, Corpataux JM, Kristal BS, Mitchell JR, Ozaki CK (2016) Surgical injury induces local and distant adipose tissue browning. Adipocyte 5:163–174

    Article  PubMed  Google Scholar 

  58. Ma SW, Foster DO (1986) Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo. Can J Physiol Pharmacol 64:609–614

    Article  CAS  PubMed  Google Scholar 

  59. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249

    Article  CAS  PubMed  Google Scholar 

  60. Mills EL, Pierce KA, Jedrychowski MP, Garrity R, Winther S, Vidoni S, Yoneshiro T, Spinelli JB, Lu GZ, Kazak L, Banks AS, Haigis MC, Kajimura S, Murphy MP, Gygi SP, Clish CB, Chouchani ET (2018) Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature. 560:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morrot A, da Fonseca LM, Salustiano EJ, Gentile LB, Conde L, Filardy AA, Franklim TN, da Costa KM, Freire-de-Lima CG, Freire-de-Lima L (2018) Metabolic symbiosis and immunomodulation: how tumor cell-derived lactate may disturb innate and adaptive immune responses. Front Oncol 8:81

    Article  PubMed  PubMed Central  Google Scholar 

  62. Offermanns S (2017) Hydroxy-carboxylic acid receptor actions in metabolism. Trends Endocrinol Metab 28:227–236

    Article  CAS  PubMed  Google Scholar 

  63. Okamatsu-Ogura Y, Nio-Kobayashi J, Nagaya K, Tsubota A, Kimura K (2018) Brown adipocytes postnatally arise through both differentiation from progenitors and conversion from white adipocytes in Syrian hamster. J Appl Physiol (1985) 124:99–108

    Article  CAS  Google Scholar 

  64. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166

    Article  CAS  PubMed  Google Scholar 

  65. Perez-Escuredo J, Van Hee VF, Sboarina M, Falces J, Payen VL, Pellerin L, Sonveaux P (2016) Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta 1863:2481–97

  66. Petersen C, Nielsen MD, Andersen ES, Basse AL, Isidor MS, Markussen LK, Viuff BM, Lambert IH, Hansen JB, Pedersen SF (2017) MCT1 and MCT4 expression and lactate flux activity increase during white and brown adipogenesis and impact adipocyte metabolism. Sci Rep 7:13101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, Zechner R, Wagner EF (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20:433–447

    Article  CAS  PubMed  Google Scholar 

  68. Porter C, Herndon DN, Bhattarai N, Ogunbileje JO, Szczesny B, Szabo C, Toliver-Kinsky T, Sidossis LS (2015) Severe burn injury induces thermogenically functional mitochondria in murine white adipose tissue. Shock. 44:258–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Puchalska P, Crawford PA (2017) Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 25:262–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, Haas R, Smith J, Headland SE, Blighe K, Ruscica M, Humby F, Lewis MJ, Kamphorst JJ, Bombardieri M, Pitzalis C, Mauro C (2019) Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab 30(1055–1074):e1058

    Google Scholar 

  71. Rodriguez-Colman MJ, Schewe M, Meerlo M, Stigter E, Gerrits J, Pras-Raves M, Sacchetti A, Hornsveld M, Oost KC, Snippert HJ, Verhoeven-Duif N, Fodde R, Burgering BM (2017) Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature. 543:424–427

    Article  CAS  PubMed  Google Scholar 

  72. Romero-Garcia S, Moreno-Altamirano MM, Prado-Garcia H, Sanchez-Garcia FJ (2016) Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol 7:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell. 156:20–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Saggerson ED, McAllister TW, Baht HS (1988) Lipogenesis in rat brown adipocytes. Effects of insulin and noradrenaline, contributions from glucose and lactate as precursors and comparisons with white adipocytes. Biochem J 251:701–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sahuri-Arisoylu M, Brody LP, Parkinson JR, Parkes H, Navaratnam N, Miller AD, Thomas EL, Frost G, Bell JD (2016) Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. Int J Obes 40:955–963

    Article  CAS  Google Scholar 

  76. Schreiber R, Diwoky C, Schoiswohl G, Feiler U, Wongsiriroj N, Abdellatif M, Kolb D, Hoeks J, Kershaw EE, Sedej S, Schrauwen P, Haemmerle G, Zechner R (2017) Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue. Cell Metab 26(753–763):e757

    Google Scholar 

  77. Shin H, Ma Y, Chanturiya T, Cao Q, Wang Y, Kadegowda AKG, Jackson R, Rumore D, Xue B, Shi H, Gavrilova O, Yu L (2017) Lipolysis in brown adipocytes is not essential for cold-induced thermogenesis in mice. Cell Metab 26(764–777):e765

    Google Scholar 

  78. Sidossis LS, Porter C, Saraf MK, Borsheim E, Radhakrishnan RS, Chao T, Ali A, Chondronikola M, Mlcak R, Finnerty CC, Hawkins HK, Toliver-Kinsky T, Herndon DN (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22:219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Son’kin V, Akimov E, Andreev R, Yakushkin A, Kozlov A (2014) Brown adipose tissue participate in lactate utilization during muscular work. Proceedings of the 2nd International Congress on Sports Sciences Research and Technology Support 731 (icSPORTS-2014). 97–102

  80. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Srivastava S, Kashiwaya Y, King MT, Baxa U, Tam J, Niu G, Chen X, Clarke K, Veech RL (2012) Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB J 26:2351–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sukonina V, Ma H, Zhang W, Bartesaghi S, Subhash S, Heglind M, Foyn H, Betz MJ, Nilsson D, Lidell ME, Naumann J, Haufs-Brusberg S, Palmgren H, Mondal T, Beg M, Jedrychowski MP, Tasken K, Pfeifer A, Peng XR, Kanduri C, Enerback S (2019) FOXK1 and FOXK2 regulate aerobic glycolysis. Nature. 566:279–283

    Article  CAS  PubMed  Google Scholar 

  83. Trayhurn P, Alomar SY (2015) Oxygen deprivation and the cellular response to hypoxia in adipocytes-perspectives on white and brown adipose tissues in obesity. Front Endocrinol (Lausanne) 6:19

    Article  Google Scholar 

  84. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    Article  PubMed  Google Scholar 

  85. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71:2550–2560

    Article  CAS  PubMed  Google Scholar 

  86. Villarroya F, Gavalda-Navarro A, Peyrou M, Villarroya J, Giralt M (2017) The lives and times of brown adipokines. Trends Endocrinol Metab 28:855–867

    Article  CAS  PubMed  Google Scholar 

  87. Villarroya J, Campderros L, Ribas-Aulinas F, Carriere A, Casteilla L, Giralt M, Villarroya F (2018) Lactate induces expression and secretion of fibroblast growth factor-21 by muscle cells. Endocrine. 61:165–168

    Article  CAS  PubMed  Google Scholar 

  88. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    Article  CAS  PubMed  Google Scholar 

  89. Wang W, Ishibashi J, Trefely S, Shao M, Cowan AJ, Sakers A, Lim HW, O'Connor S, Doan MT, Cohen P, Baur JA, King MT, Veech RL, Won KJ, Rabinowitz JD, Snyder NW, Gupta RK, Seale P (2019) A PRDM16-driven metabolic signal from adipocytes regulates precursor cell fate. Cell Metab 30(174–189):e175

    Google Scholar 

  90. Weir G, Ramage LE, Akyol M, Rhodes JK, Kyle CJ, Fletcher AM, Craven TH, Wakelin SJ, Drake AJ, Gregoriades ML, Ashton C, Weir N, van Beek EJR, Karpe F, Walker BR, Stimson RH (2018) Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides. Cell Metab 27(1348–1355):e1344

    Google Scholar 

  91. Winther S, Isidor MS, Basse AL, Skjoldborg N, Cheung A, Quistorff B, Hansen JB (2018) Restricting glycolysis impairs brown adipocyte glucose and oxygen consumption. Am J Physiol Endocrinol Metab 314:E214–E223

    Article  PubMed  CAS  Google Scholar 

  92. Wood IS, Stezhka T, Trayhurn P (2011) Modulation of adipokine production, glucose uptake and lactate release in human adipocytes by small changes in oxygen tension. Pflugers Arch 462:469–477

    Article  CAS  PubMed  Google Scholar 

  93. Yoneshiro T, Wang Q, Tajima K, Matsushita M, Maki H, Igarashi K, Dai Z, White PJ, McGarrah RW, Ilkayeva OR, Deleye Y, Oguri Y, Kuroda M, Ikeda K, Li H, Ueno A, Ohishi M, Ishikawa T, Kim K, Chen Y, Sponton CH, Pradhan RN, Majd H, Greiner VJ, Yoneshiro M, Brown Z, Chondronikola M, Takahashi H, Goto T, Kawada T, Sidossis L, Szoka FC, McManus MT, Saito M, Soga T, Kajimura S (2019) BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature. 572:614–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Casteilla laboratory is supported by the Université Paul Sabatier-Université de Toulouse, the Centre National de la Recherche Scientifique (CNRS), the Etablissement Français du Sang (EFS), the Ecole Nationale Vétérinaire de Toulouse (ENVT), and the Institut pour la Recherche Médicale (Inserm). D.L. is fellow from the Ministère de l’Enseignement supérieur, de la Recherche et de lʼInnovation. We also thank Michel Rigoulet, Luc Pénicaud and Cédric Moro for helpful discussions as well as the members of STROMALab.

Funding

We thank our financial supports (Société Française de Nutrition and the European Union FP7 project DIABAT (HEALTH-F2-2011-278373)). Jean-Charles Portais is supported by a grant from the INSERM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Carrière.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

N/A

Informed consent

N/A

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

Lactate as a major contributor of oxidative metabolism

Lactate as a redox carrier driving brown/beige fat activity and development

Browning remodeling of white adipocytes as a way to cope with redox stress

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrière, A., Lagarde, D., Jeanson, Y. et al. The emerging roles of lactate as a redox substrate and signaling molecule in adipose tissues. J Physiol Biochem 76, 241–250 (2020). https://doi.org/10.1007/s13105-019-00723-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00723-2

Keywords

Navigation