Skip to main content

Advertisement

Log in

Agaricus bisporus supplementation reduces high-fat diet-induced body weight gain and fatty liver development

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Obesity is a global epidemic characterized not only by excessive fat deposition but also by important complications such as nonalcoholic liver steatosis. Beneficial antiobesogenic effects have been described for some mushrooms. The current study aimed to demonstrate the protective effect of Agaricus bisporus (AB) supplementation against the metabolic alterations induced by high-fat-diet (HFD) feeding. Eight-week-old C57BL/6J mice were fed for 10 weeks with one of the following diets: (1) control diet (n = 7), (2) HFD (n = 7), (3) HFD supplemented with 5% AB (n = 9), and (4) HFD supplemented with 10% AB (n = 9). A pair-fed group was also included for the 10% AB group (n = 6). The impact of AB supplementation on food intake, body weight gain, and liver and fat pad weights was examined. Biochemical, histological, and molecular parameters were also analyzed. Dietary supplementation with 10% AB reduced the HFD-induced increase in body, epididymal, and mesenteric fat weights (p < 0.01, p < 0.05, and p < 0.05, respectively). Supplementation with AB also reduced liver damage in a dose-dependent manner (p < 0.01 and p < 0.001). This effect was confirmed by histological analysis that showed that liver steatosis was markedly reduced in mice fed with AB. The beneficial properties of 10% AB supplementation appear to be mediated through a decrease in food intake and via stimulation of mesenteric and hepatic free-fatty acid beta-oxidation, along with a decrease in epidydimal and hepatic expression of CD36. In conclusion, supplementation with AB prevents excessive body weight gain and liver steatosis induced by HFD consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alam N, Amin R, Khan A, Ara I, Shim MJ, Lee MW, Lee UY, Lee TS (2009) Comparative effects of oyster mushrooms on lipid profile, liver and kidney function in hypercholesterolemic rats. Mycobiology 37(1):37–42. https://doi.org/10.4489/MYCO.2009.37.1.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anandhi R, Annadurai T, Anitha TS, Muralidharan AR, Najmunnisha K, Nachiappan V, Thomas PA, Geraldine P (2013) Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in triton WR-1339-induced hypercholesterolemic rats. J Physiol Biochem 69(2):313–323. https://doi.org/10.1007/s13105-012-0215-6

    Article  CAS  PubMed  Google Scholar 

  3. Andersson T, Simonyte K, Andrew R, Strand M, Burén J, Walker BR, Mattsson C, Olsson T (2009) Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women. PLoS One 4(12):e8475. https://doi.org/10.1371/journal.pone.0008475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bahadoran Z, Tohidi M, Nazeri P, Mehran M, Azizi F, Mirmiran P (2012) Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: a randomized double-blind clinical trial. Int J Food Sci Nutr 63(7):767–771. https://doi.org/10.3109/09637486.2012.665043

    Article  CAS  PubMed  Google Scholar 

  5. Beck EJ, Tosh SM, Batterham MJ, Tapsell LC, Huang XF (2009) Oat beta-glucan increases postprandial cholecystokinin levels, decreases insulin response and extends subjective satiety in overweight subjects. Mol Nutr Food Res 53(10):1343–1351. https://doi.org/10.1002/mnfr.200800343

    Article  CAS  PubMed  Google Scholar 

  6. Bonen A, Tandon NN, Glatz JF, Luiken JJ, Heigenhauser GJ (2006) The fatty acid transporter FAT/CD36 is upregulated in subcutaneous and visceral adipose tissues in human obesity and type 2 diabetes. Int J Obes (Lond) 30(6):877–883. https://doi.org/10.1038/sj.ijo.0803212

    Article  CAS  Google Scholar 

  7. Bray GA, Paeratakul S, Popkin BM (2004) Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol Behav 83(4):549–555. https://doi.org/10.1016/j.physbeh.2004.08.039

    Article  CAS  PubMed  Google Scholar 

  8. Brennan CS (2005) Dietary fibre, glycaemic response, and diabetes. Mol Nutr Food Res 49(6):560–570. https://doi.org/10.1002/mnfr.200500025

    Article  PubMed  Google Scholar 

  9. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94(9):2467–2474. https://doi.org/10.1111/j.1572-0241.1999.01377.x

    Article  CAS  PubMed  Google Scholar 

  10. Bugianesi E, Leone N, Vanni E, Marchesini G, Brunello F, Carucci P, Musso A, De Paolis P, Capussotti L, Salizzoni M, Rizzetto M (2002) Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123(1):134–140

    Article  PubMed  Google Scholar 

  11. Caesar R, Manieri M, Kelder T, Boekschoten M, Evelo C, Muller M, Kooistra T, Cinti S, Kleemann R, Drevon CA (2010) A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences. PLoS One 5(7):e11525. https://doi.org/10.1371/journal.pone.0011525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen S, Oh SR, Phung S, Hur G, Ye JJ, Kwok SL, Shrode GE, Belury M, Adams LS, Williams D (2006) Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Res 66(24):12026–12034. https://doi.org/10.1158/0008-5472.CAN-06-2206

    Article  CAS  PubMed  Google Scholar 

  13. Chusyd DE, Wang D, Huffman DM, Nagy TR (2016) Relationships between rodent white adipose fat pads and human white adipose fat depots. Front Nutr 3:10. https://doi.org/10.3389/fnut.2016.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Miranda AM, Ribeiro GM, Cunha AC, Silva LS, dos Santos RC, Pedrosa ML, Silva ME (2014) Hypolipidemic effect of the edible mushroom Agaricus blazei in rats subjected to a hypercholesterolemic diet. J Physiol Biochem 70(1):215–224. https://doi.org/10.1007/s13105-013-0295-y

    Article  CAS  PubMed  Google Scholar 

  15. Delargy HJ, O’Sullivan KR, Fletcher RJ, Blundell JE (1997) Effects of amount and type of dietary fibre (soluble and insoluble) on short-term control of appetite. Int J Food Sci Nutr 48(1):67–77

    Article  CAS  PubMed  Google Scholar 

  16. Dixon JB, Bhathal PS, O’Brien PE (2001) Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 121(1):91–100

    Article  CAS  PubMed  Google Scholar 

  17. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115(5):1343–1351. https://doi.org/10.1172/JCI23621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drapeau V, King N, Hetherington M, Doucet E, Blundell J, Tremblay A (2007) Appetite sensations and satiety quotient: predictors of energy intake and weight loss. Appetite 48(2):159–166. https://doi.org/10.1016/j.appet.2006.08.002

    Article  PubMed  Google Scholar 

  19. Dubost NJ, Ou B, Beelman RB (2007) Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem 105:727–735. https://doi.org/10.1016/j.foodchem.2007.01.030

    Article  CAS  Google Scholar 

  20. Fernandez-Galilea M, Perez-Matute P, Prieto-Hontoria PL, Martinez JA, Moreno-Aliaga MJ (2012) Effects of lipoic acid on lipolysis in 3T3-L1 adipocytes. J Lipid Res 53(11):2296–2306. https://doi.org/10.1194/jlr.M027086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D’Agostino RB Sr, O’Donnell CJ (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham heart study. Circulation 116(1):39–48. https://doi.org/10.1161/CIRCULATIONAHA.106.675355

    Article  PubMed  Google Scholar 

  22. Granneman JG, Moore HP, Krishnamoorthy R, Rathod M (2009) Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem 284(50):34538–34544. https://doi.org/10.1074/jbc.M109.068478M109.068478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hajri T, Hall AM, Jensen DR, Pietka TA, Drover VA, Tao H, Eckel R, Abumrad NA (2007) CD36-facilitated fatty acid uptake inhibits leptin production and signaling in adipose tissue. Diabetes 56(7):1872–1880. https://doi.org/10.2337/db06-1699

    Article  CAS  PubMed  Google Scholar 

  24. Handayani D, Chen J, Meyer BJ, Huang XF (2011) Dietary shiitake mushroom (Lentinus edodes) prevents fat deposition and lowers triglyceride in rats fed a high-fat diet. J Obes 2011:258051. https://doi.org/10.1155/2011/258051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hashimoto T, Cook WS, Qi C, Yeldandi AV, Reddy JK, Rao MS (2000) Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 275(37):28918–28928. https://doi.org/10.1074/jbc.M910350199M910350199

    Article  CAS  PubMed  Google Scholar 

  26. Hocking SL, Chisholm DJ, James DE (2008) Studies of regional adipose transplantation reveal a unique and beneficial interaction between subcutaneous adipose tissue and the intra-abdominal compartment. Diabetologia 51(5):900–902. https://doi.org/10.1007/s00125-008-0969-0

    Article  CAS  PubMed  Google Scholar 

  27. Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. PharmacoEconomics 33(7):673–689. https://doi.org/10.1007/s40273-014-0243-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang J, Ou Y, Yew TWD, Liu J, Leng B, Lin Z, Su Y, Zhuang Y, Lin J, Li X, Xue Y, Pan Y (2016) Hepatoprotective effects of polysaccharide isolated from Agaricus bisporus industrial wastewater against CCl4-induced hepatic injury in mice. Int J Biol Macromol 82:678–686. https://doi.org/10.1016/j.ijbiomac.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  29. Hughes K (2002) Chitosan and dietary fibers. Prepared Foods. NS11-NS14

  30. Jayakumar T, Ramesh E, Geraldine P (2006) Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl(4)-induced liver injury in rats. Food Chem Toxicol 44(12):1989–1996. https://doi.org/10.1016/j.fct.2006.06.025

    Article  CAS  PubMed  Google Scholar 

  31. Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudi SR, Pang G, Cho KY, Song CH (2010) White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 30(1):49–56. https://doi.org/10.1016/j.nutres.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  32. Jo Feeney M, Miller AM, Roupas P (2014) Mushrooms-biologically distinct and nutritionally unique. Exploring a “Third Food Kingdom” Nutr Today 49(6):301–307. https://doi.org/10.1097/NT.0000000000000063

    Article  PubMed  Google Scholar 

  33. Kabir Y, Kimura S (1989) Dietary mushrooms reduce blood pressure in spontaneously hypertensive rats (SHR). J Nutr Sci Vitaminol (Tokyo) 35(1):91–94

    Article  CAS  Google Scholar 

  34. Kanaya N, Kubo M, Liu Z, Chu P, Wang C, Yuan YC, Chen S (2011) Protective effects of white button mushroom (Agaricus bisporus) against hepatic steatosis in ovariectomized mice as a model of postmenopausal women. PLoS One 6(10):e26654. https://doi.org/10.1371/journal.pone.0026654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim WR, Flamm SL, Di Bisceglie AM, Bodenheimer HC, Disease PPCotAAftSoL (2008) Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 47(4):1363–1370. https://doi.org/10.1002/hep.22109

    Article  CAS  PubMed  Google Scholar 

  36. Koo SH (2013) Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol 19(3):210–215. https://doi.org/10.3350/cmh.2013.19.3.210

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koyyalamudi SR, Jeong SC, Song CH, Cho KY, Pang G (2009) Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation. J Agric Food Chem 57(8):3351–3355. https://doi.org/10.1021/jf803908q

    Article  CAS  PubMed  Google Scholar 

  38. Kozarski M, Klaus A, Niksic M, Jakovljevic D, Helsper J, VG L (2011) Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem 129(4):1667–1675. https://doi.org/10.1016/j.foodchem.2011.06.029

    Article  CAS  Google Scholar 

  39. Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A 96(13):7473–7478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu KH, Chan YL, Chan JC, Chan WB, Kong WL (2006) Mesenteric fat thickness as an independent determinant of fatty liver. Int J Obes 30(5):787–793. https://doi.org/10.1038/sj.ijo.0803201

    Article  CAS  Google Scholar 

  41. Liu J, Jia L, Kan J, Jin CH (2013) In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol 51:310–316. https://doi.org/10.1016/j.fct.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  42. Lodhi IJ, Yin L, Jensen-Urstad AP, Funai K, Coleman T, Baird JH, El Ramahi MK, Razani B, Song H, Fu-Hsu F, Turk J, Semenkovich CF (2012) Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARgamma activation to decrease diet-induced obesity. Cell Metab 16(2):189–201. https://doi.org/10.1016/j.cmet.2012.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lomba A, Martinez JA, Garcia-Diaz DF, Paternain L, Marti A, Campion J, Milagro FI (2010) Weight gain induced by an isocaloric pair-fed high fat diet: a nutriepigenetic study on FASN and NDUFB6 gene promoters. Mol Genet Metab 101(2–3):273–278. https://doi.org/10.1016/j.ymgme.2010.07.017S1096-7192(10)00294-5

    Article  CAS  PubMed  Google Scholar 

  44. Londos C, Brasaemle DL, Schultz CJ, Adler-Wailes DC, Levin DM, Kimmel AR, Rondinone CM (1999) On the control of lipolysis in adipocytes. Ann N Y Acad Sci 892:155–168

    Article  CAS  PubMed  Google Scholar 

  45. Maffetone PB, Rivera-Dominguez I, Laursen PB (2017) Overfat adults and children in developed countries: the public health importance of identifying excess body fat. Front Public Health 5:190. https://doi.org/10.3389/fpubh.2017.00190

    Article  PubMed  PubMed Central  Google Scholar 

  46. Michelotti GA, Machado MV, Diehl AM (2013) NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol 10(11):656–665. https://doi.org/10.1038/nrgastro.2013.183

    Article  CAS  PubMed  Google Scholar 

  47. Miyoshi H, Souza SC, Zhang HH, Strissel KJ, Christoffolete MA, Kovsan J, Rudich A, Kraemer FB, Bianco AC, Obin MS, Greenberg AS (2006) Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J Biol Chem 281(23):15837–15844. https://doi.org/10.1074/jbc.M601097200

    Article  CAS  PubMed  Google Scholar 

  48. Miyoshi H, Perfield JW 2nd, Obin MS, Greenberg AS (2008) Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem 105(6):1430–1436. https://doi.org/10.1002/jcb.21964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moro C, Palacios I, Lozano M, D’Arrigo M, Guillamón E, Villares A, Martinez A, García-Lafuente A (2012) Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem 130:350–355. https://doi.org/10.1016/j.foodchem.2011.07.049

    Article  CAS  Google Scholar 

  50. Palou M, Sanchez J, Priego T, Rodriguez AM, Pico C, Palou A (2010) Regional differences in the expression of genes involved in lipid metabolism in adipose tissue in response to short- and medium-term fasting and refeeding. J Nutr Biochem 21(1):23–33. https://doi.org/10.1016/j.jnutbio.2008.10.001S0955-2863(08)00220-9

    Article  CAS  PubMed  Google Scholar 

  51. Park CW, Zhang Y, Zhang X, Wu J, Chen L, Cha DR, Su D, Hwang MT, Fan X, Davis L, Striker G, Zheng F, Breyer M, Guan Y (2006) PPARalpha agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int 69(9):1511–1517. https://doi.org/10.1038/sj.ki.5000209

    Article  CAS  PubMed  Google Scholar 

  52. Park MK, Han Y, Kim MS, Seo E, Kang S, Park SY, Koh H, Kim DK, Lee HJ (2012) Reduction of food intake by Fenofibrate is associated with cholecystokinin release in long-Evans Tokushima rats. Korean J Physiol Pharmacol 16(3):181–186. https://doi.org/10.4196/kjpp.2012.16.3.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perez-Matute P, Neville MJ, Tan GD, Frayn KN, Karpe F (2009) Transcriptional control of human adipose tissue blood flow. Obesity 17(4):681–688. https://doi.org/10.1038/oby.2008.606

    Article  CAS  PubMed  Google Scholar 

  54. Rakhshandehroo M, Knoch B, Muller M, Kersten S (2010) Peroxisome proliferator-activated receptor alpha target genes. PPAR Res 2010:1–20. https://doi.org/10.1155/2010/612089612089

    Article  Google Scholar 

  55. Saggerson D (2008) Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr 28:253–272. https://doi.org/10.1146/annurev.nutr.28.061807.155434

    Article  CAS  PubMed  Google Scholar 

  56. Saito N, Kimura S, Miyamoto T, Fukushima S, Amagasa M, Shimamoto Y, Nishioka C, Okamoto S, Toda C, Washio K, Asano A, Miyoshi I, Takahashi E, Kitamura H (2017) Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Biochem Biophys Rep 9:322–329. https://doi.org/10.1016/j.bbrep.2017.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sattar N, Forrest E, Preiss D (2014) Non-alcoholic fatty liver disease. BMJ 349:g4596. https://doi.org/10.1136/bmj.g4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Slavin J, Green H (2007) Dietary fibre and satiety. Nutr Bull 32(s1):32–42. https://doi.org/10.1111/j.1467-3010.2007.00603.x

    Article  Google Scholar 

  59. Theuwissen E, Mensink RP (2008) Water-soluble dietary fibers and cardiovascular disease. Physiol Behav 94(2):285–292. https://doi.org/10.1016/j.physbeh.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  60. Valdecantos MP, Perez-Matute P, Gonzalez-Muniesa P, Prieto-Hontoria PL, Moreno-Aliaga MJ, Martinez JA (2012) Lipoic acid administration prevents nonalcoholic steatosis linked to long-term high-fat feeding by modulating mitochondrial function. J Nutr Biochem 23(12):1676–1684. https://doi.org/10.1016/j.jnutbio.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  61. Willis HJ, Eldridge AL, Beiseigel J, Thomas W, Slavin JL (2009) Greater satiety response with resistant starch and corn bran in human subjects. Nutr Res 29(2):100–105. https://doi.org/10.1016/j.nutres.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  62. Wilson CG, Tran JL, Erion DM, Vera NB, Febbraio M, Weiss EJ (2016) Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology 157(2):570–585. https://doi.org/10.1210/en.2015-1866

    Article  CAS  PubMed  Google Scholar 

  63. Wueest S, Item F, Lucchini FC, Challa TD, Muller W, Bluher M, Konrad D (2016) Mesenteric fat lipolysis mediates obesity-associated hepatic steatosis and insulin resistance. Diabetes 65(1):140–148. https://doi.org/10.2337/db15-0941

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the excellent technical assistance of Judith Narro and the helpful advice from Dr. Alfredo Martinez in the histology analysis.

Funding

This work was supported by a grant from the Agencia de Desarrollo Económico de La Rioja (ADER) (project number 2014-I-IDD-00091). ADER played no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Pérez-Matute.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures involving animals were in accordance with the ethical standards of the ethics committee on animal welfare of our institution (Comité Ético de Experimentación Animal del Centro de Investigación Biomédica de La Rioja, CEEA-CIBIR).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iñiguez, M., Pérez-Matute, P., Villanueva-Millán, M.J. et al. Agaricus bisporus supplementation reduces high-fat diet-induced body weight gain and fatty liver development. J Physiol Biochem 74, 635–646 (2018). https://doi.org/10.1007/s13105-018-0649-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-018-0649-6

Keywords

Navigation