Skip to main content

Advertisement

Log in

LINGO-1 siRNA nanoparticles promote central remyelination in ethidium bromide-induced demyelination in rats

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Multiple sclerosis is among the most common causes of neurological disabilities in young adults. Over the past decade, several therapeutic strategies have emerged as having potential neuroprotective and neuroregenerative properties. We investigated the effect of intranasal administration of LINGO-1–directed siRNA-loaded chitosan nanoparticles on demyelination and remyelination processes in a rat model of demyelination. Adult male Wistar rats were randomly assigned to one of 6 groups (n = 10 each) and subjected to intrapontine stereotaxic injection of ethidium bromide (EB) to induce demyelination. EB-treated rats were either left untreated or received intranasal LINGO-1–directed siRNA–chitosan nanoparticles from day 1 to day 7 (demyelination group) or from day 7 to day 21 (remyelination group) after EB injection. Chitosan nanoparticle (50 μl) was given alone after EB stereotaxic injection for both demyelination and remyelination groups. Two additional groups received 10 μl of saline by stereotaxic injection, followed by intranasal saline as controls for demyelination and remyelination groups (n = 10/group). Behavioural testing was conducted for all rats, as well as terminal biochemical assays and pathological examination of pontine tissues were done. After EB injection, rats had compromised motor performance and coordination. Pathological evidence of demyelination was observed in pontine tissue and higher levels of caspase-3 activity were detected compared to control rats. With LINGO-1–directed siRNA–chitosan nanoparticle treatment, animals performed better than controls. Remyelination-treated group showed better motor performance than demyelination group. LINGO-1 downregulation was associated with signs of repair in histopathological sections, higher expression of pontine myelin basic protein (MBP) mRNA and protein and lower levels of caspase-3 activity indicating neuroprotection and remyelination enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EB:

Ethidium bromide

MBP:

Myelin basic protein

OPCs:

Oligodendrocyte precursor cells

SiRNA:

Small interfering RNA

References

  1. Aartsma-Rus A, van Putten M (2014) Assessing functional performance in the mdx mouse model. J Vis Exp. https://doi.org/10.3791/51303

  2. Agundez JA, Jimenez-Jimenez FJ, Alonso-Navarro H, Garcia-Martin E (2015) The potential of LINGO-1 as a therapeutic target for essential tremor. Expert Opin Ther Targets 19:1139–1148. https://doi.org/10.1517/14728222.2015.1028360

    Article  CAS  PubMed  Google Scholar 

  3. Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH (2010) Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target 18:381–388. https://doi.org/10.3109/10611860903483396

    Article  CAS  PubMed  Google Scholar 

  4. Beckmann DV, Carvalho FB, Mazzanti CM, Dos Santos RP, Andrades AO, Aiello G, Rippilinger A, Graca DL, Abdalla FH, Oliveira LS, Gutierres JM, Schetinger MR, Mazzanti A (2014) Neuroprotective role of quercetin in locomotor activities and cholinergic neurotransmission in rats experimentally demyelinated with ethidium bromide. Life Sci 103:79–87. https://doi.org/10.1016/j.lfs.2014.03.033

    Article  CAS  PubMed  Google Scholar 

  5. Bondan EF, Martins Mde F, Bernardi MM (2015) Propentofylline reverses delayed remyelination in streptozotocin-induced diabetic rats. Arch Endocrinol Metab 59:47–53. https://doi.org/10.1590/2359-3997000000009

    Article  PubMed  Google Scholar 

  6. Bourikas D, Mir A, Walmsley AR (2010) LINGO-1-mediated inhibition of oligodendrocyte differentiation does not require the leucine-rich repeats and is reversed by p75(NTR) antagonists. Mol Cell Neurosci 45:363–369. https://doi.org/10.1016/j.mcn.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  7. Boyd A, Zhang H, Williams A (2013) Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol 125:841–859. https://doi.org/10.1007/s00401-013-1112-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch L, Butzkueven H, Ziemssen F, Massacesi L, Chai Y, Xu L, Freeman S (2015) Efficacy analysis of the anti-LINGO-1 monoclonal antibody BIIB033 in acute optic neuritis: the RENEW trial Neurology 84:Poster p7.202

  9. Cao J, Wang J, Dwyer JB, Gautier NM, Wang S, Leslie FM, Li MD (2013) Gestational nicotine exposure modifies myelin gene expression in the brains of adolescent rats with sex differences. Transl Psychiatry 3:e247. https://doi.org/10.1038/tp.2013.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caprariello AV, Mangla S, Miller RH, Selkirk SM (2012) Apoptosis of oligodendrocytes in the central nervous system results in rapid focal demyelination. Ann Neurol 72:395–405. https://doi.org/10.1002/ana.23606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, Rosen A (1996) Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med 183:1957–1964

    Article  CAS  PubMed  Google Scholar 

  12. Chang A, Staugaitis SM, Dutta R, Batt CE, Easley KE, Chomyk AM, Yong VW, Fox RJ, Kidd GJ, Trapp BD (2012) Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann Neurol 72:918–926. https://doi.org/10.1002/ana.23693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corbet C, Ragelle H, Pourcelle V, Vanvarenberg K, Marchand-Brynaert J, Preat V, Feron O (2016) Delivery of siRNA targeting tumor metabolism using non-covalent PEGylated chitosan nanoparticles: identification of an optimal combination of ligand structure, linker and grafting method. J Control Release 223:53–63. https://doi.org/10.1016/j.jconrel.2015.12.020

    Article  CAS  PubMed  Google Scholar 

  14. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070. https://doi.org/10.1038/nature08956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deiss A, Brecht I, Haarmann A, Buttmann M (2013) Treating multiple sclerosis with monoclonal antibodies: a 2013 update. Expert Rev Neurother 13:313–335. https://doi.org/10.1586/ern.13.17

    Article  CAS  Google Scholar 

  16. Dubois-Dalcq M, Ffrench-Constant C, Franklin RJ (2005) Enhancing central nervous system remyelination in multiple sclerosis. Neuron 48:9–12. https://doi.org/10.1016/j.neuron.2005.09.004

    Article  CAS  PubMed  Google Scholar 

  17. El-Tallawy HN, Farghaly WMA, Badry R, Metwally NA, Shehata GA, Rageh TA, El Hamed MA, Kandil MR (2016) Prevalence of multiple sclerosis in Al Quseir city, Red Sea Governorate, Egypt. Neuropsychiatr Dis Treat 12:155–158. https://doi.org/10.2147/NDT.S87348

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goudarzvand M, Javan M, Mirnajafi-Zadeh J, Mozafari S, Tiraihi T (2010) Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cell Mol Neurobiol 30:289–299. https://doi.org/10.1007/s10571-009-9451-x

    Article  CAS  PubMed  Google Scholar 

  19. Hagemeyer N, Boretius S, Ott C, Von Streitberg A, Welpinghus H, Sperling S, Frahm J, Simons M, Ghezzi P, Ehrenreich H (2012) Erythropoietin attenuates neurological and histological consequences of toxic demyelination in mice. Mol Med 18:628–635. https://doi.org/10.2119/molmed.2011.00457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hao C, Wang W, Wang S, Zhang L, Guo Y (2017) An overview of the protective effects of chitosan and acetylated chitosan oligosaccharides against neuronal disorders. Mar Drugs 15. https://doi.org/10.3390/md15040089

  21. Hernandez TD, Schallert T (1988) Seizures and recovery from experimental brain damage. Exp Neurol 102:318–324

    Article  CAS  PubMed  Google Scholar 

  22. Ji B, Li M, Wu WT, Yick LW, Lee X, Shao Z, Wang J, So KF, McCoy JM, Pepinsky RB, Mi S, Relton JK (2006) LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Mol Cell Neurosci 33:311–320. https://doi.org/10.1016/j.mcn.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  23. Kim ID, Shin JH, Kim SW, Choi S, Ahn J, Han PL, Park JS, Lee JK (2012) Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol Ther 20:829–839. https://doi.org/10.1038/mt.2011.291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228. https://doi.org/10.1038/nn1188

    Article  CAS  PubMed  Google Scholar 

  25. Michel K, Zhao T, Karl M, Lewis K, Fyffe-Maricich SL (2015) Translational control of myelin basic protein expression by ERK2 MAP kinase regulates timely remyelination in the adult brain. J Neurosci 35:7850–7865. https://doi.org/10.1523/jneurosci.4380-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Munzel EJ, Williams A (2013) Promoting remyelination in multiple sclerosis-recent advances. Drugs 73:2017–2029. https://doi.org/10.1007/s40265-013-0146-8

    Article  CAS  PubMed  Google Scholar 

  27. Nayerossadat N, Maedeh T, Ali PA (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27. https://doi.org/10.4103/2277-9175.98152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishikawa M, Yamauchi M, Morimoto K, Ishida E, Takakura Y, Hashida M (2000) Hepatocyte-targeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther 7:548–555. https://doi.org/10.1038/sj.gt.3301140

    Article  CAS  PubMed  Google Scholar 

  29. Pangestuti R, Kim SK (2010) Neuroprotective properties of chitosan and its derivatives. Mar Drugs 8:2117–2128. https://doi.org/10.3390/md8072117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pepinsky RB, Shao Z, Ji B, Wang Q, Meng G, Walus L, Lee X, Hu Y, Graff C, Garber E, Meier W, Mi S (2011) Exposure levels of anti-LINGO-1 Li81 antibody in the central nervous system and dose-efficacy relationships in rat spinal cord remyelination models after systemic administration. J Pharmacol Exp Ther 339:519–529. https://doi.org/10.1124/jpet.111.183483

    Article  CAS  PubMed  Google Scholar 

  31. Podbielska M, Banik NL, Kurowska E, Hogan EL (2013) Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci 3:1282–1324. https://doi.org/10.3390/brainsci3031282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ragelle H, Riva R, Vandermeulen G, Naeye B, Pourcelle V, Le Duff CS, D’Haese C, Nysten B, Braeckmans K, De Smedt SC, Jerome C, Preat V (2014) Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J Control Release 176:54–63. https://doi.org/10.1016/j.jconrel.2013.12.026

    Article  CAS  PubMed  Google Scholar 

  33. Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H (2007) TROY and LINGO-1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions. Neuropathol Appl Neurobiol 33:99–107. https://doi.org/10.1111/j.1365-2990.2006.00787.x

    Article  CAS  PubMed  Google Scholar 

  34. Shields SA, Gilson JM, Blakemore WF, Franklin RJ (1999) Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia 28:77–83

    Article  CAS  PubMed  Google Scholar 

  35. Tran JQ, Rana J, Barkhof F, Melamed I, Gevorkyan H, Wattjes MP, de Jong R, Brosofsky K, Ray S, Xu L, Zhao J, Parr E, Cadavid D (2014) Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm 1:e18. https://doi.org/10.1212/nxi.0000000000000018

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wei P, Ma P, Xu QS, Bai QH, Gu JG, Xi H, Du YG, Yu C (2012) Chitosan oligosaccharides suppress production of nitric oxide in lipopolysaccharide-induced N9 murine microglial cells in vitro. Glycoconj J 29:285–295. https://doi.org/10.1007/s10719-012-9392-3

    Article  CAS  PubMed  Google Scholar 

  37. Wu HF, Cen JS, Zhong Q, Chen L, Wang J, Deng DY, Wan Y (2013) The promotion of functional recovery and nerve regeneration after spinal cord injury by lentiviral vectors encoding Lingo-1 shRNA delivered by Pluronic F-127. Biomaterials 34:1686–1700. https://doi.org/10.1016/j.biomaterials.2012.11.013

    Article  CAS  PubMed  Google Scholar 

  38. Zhao C, Fancy SP, Kotter MR, Li WW, Franklin RJ (2005) Mechanisms of CNS remyelination--the key to therapeutic advances. J Neurol Sci 233:87–91. https://doi.org/10.1016/j.jns.2005.03.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Teshreen M. Zeitoun, Ass. Prof in the Department of Medical Histology and Cell Biology-Alexandria Faculty of Medicine for her great support in Luxol fast blue staining and interpretation; and to Dr. Bassma El-Saba, Professor of Pathology-Alexandria Faculty of Medicine for her assistance in the histopathology analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer E. Dief.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Additionally, all procedures performed involving animals were in accordance with the ethical standards of Alexandria University, Egypt.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, A.E.H., Dief, A.E., El Azhary, N.M. et al. LINGO-1 siRNA nanoparticles promote central remyelination in ethidium bromide-induced demyelination in rats. J Physiol Biochem 75, 89–99 (2019). https://doi.org/10.1007/s13105-018-00660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-018-00660-6

Keywords

Navigation